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ON THE RESONANCE CONCEPT IN SYSTEMS OF LINEAR AND
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

Rahmi Ibrahim Ibrahim Abdel Karim

Theorems on the resonance cases for linear and nonlinear

ordinary differential equations of the first to the nth

order are derived and proved in detail, using an earlier

report by the same author as partial basis. Minimal

orders of magnitude of the solutions and their derivatives

are given and methods for the formation of examples, with

sample calculations in matrix notation, are described.
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PART 1

THE RESONANCE CONCEPT IN SYSTEMS OF n LINEAR ORDINARY
DIFFERENTIAL FQUATIONS OF THE FIRST ORDER

Section 1. Problem Formulation, Principal Results

R.Iglisch investigated the resonance concept in linear ordinary differen-
tial equations of the second order (Bibl.5). These considerations will be ex-
tended here to systems of n ordinary linear differential equations of the first

order which will be written in matrix form with z(t) as the sought vector:

I —w@r+i; (1)
where the square (for example, real) matrix %(t) is to be continuous in t and
periodic with the period P, i.e., all n° elements a;x (t) are continuous functions

in t, periodic with P; the (for example, also real) vector f(t) is assumed as

also being continuous and periodic with P:
A+ P)=UA®); §e+P)=F(@). (2)
The homogeneoﬁs system conjugate to eq.(l) reads

Z:’:‘l((t)t) (3)
while the "adjoint!” system is
d3

dt = ur(t)ﬁr

(4)

where the superscript T is to denote the transition to the transposed matrix.

Definition 1. 1In the inhomogeneous differential equation system (1), the

resonance case is present if the adjoint system (4) has at least one solution

vector 3(t) periodic with P, for which
P
Jyotmat=c+o (5)
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is valid.

In Section I, we will prove:

Theorem 1. In the resonance case, any solution vector r(t) of eq.(1l)
assumes arbitrarily large values, increasing withopt bounds with increasing t.

Definition 2. In eq.(1), we have the principal case if eq.(L) has no /
solution vector 3(t)‘periodic with P.

In Section 5, we will prove:

Theorem 2. In the principal case, solutions r(t) of eq.(l), remaining
restricted for all t, are in existence, for example, the uniquely existing
solution periodic with P.

Definition 3. Equation (1) represents the exceptional case if eq.(L) does
have solution vectors 3(t) periodic with P but if the following relation applies

to all these solutions periodic with P:
4
Jyoiwai=o. (6)

In Section 6, we will prove:

Theorem 3. Even in the exceptional case, restricted solutions r(t) of
eq.(1l) exist fer all values of t, for example, solutions periodic with P but no
longer uniquely defined.

Sections 2 and 3 contain auxiliary considerations on the inhomogeneous
system (1), specifically on the correlation between the homogeneous system (3)
and the adjoint system (4). In this case, the periodicity stipulation (2) will
be introduced only in Section 3.

Many of the results are already known, but they are here derived in a

manner that requires no specialized knowledge.



Section 2. Auxiliary Considerations on Systems of Linear Differential
Eguations of the First Order

In this Section, the periodicity stipulation (2) will not be used.

Let m(t), ves, hn(t) be a linear independent solution system (fundamental

system) of eg.(3) at the point to, which can be combined into the solution

matrix

D) = (00, ---, 0 (9)
We then have

Det 9 () = 0.

Theorem 4. From eq.(8) it follows that
Y() = Det 9 () &0

for all values of t.

(7)

(8)

(9)

Proof. If the conjugates [subdeterminants with correct sign (—l)‘+v] for

the element yiy(t) in egs.(7) or (9) are denoted by Y;y(t) and putting

P 0 for i3k,
* Tl for =4,

the following result will be obtained, taking eq.(3) into consideration and

denoting the differentiation to t by a prime:
av =Xy.Y,=Ya, Y. Y, =208,08,Y= Y Xa,
dt [X] v,k sk s

and thus

¢
YO =Yt exp( f @yt aga -+ 0, ).

From this, theorem [, follows directly.

Theorem 5. In addition to eq.(7), the expression

P*O=9@-¢€

at an arbitrary constant matrix @ with a determinant C differing from zero,

represents a fundamental system of solutions of eg.(3).

7
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Proof. Equations (7) and (3), together with

9 = (91, 9e., ---» ha) (12)

can be combined into 29
25 —w Y.
“ (13)

From this, we can calculate
(PE) =PC=9PC=%(9C).
This means that each 9 is a solution system of eq.(3).
That we also have det(9¥8) # 0, follows from
det(96) = Y -C +o0.

Theorem 6. The vectors

Yii()
= 1 Y0 P .
3 (0 Y@ , t=1,....,n, (114.)
Y..(»)
which can be combined into the matrix
1
8() = (- Yast) (15)

form a fundamental system of solutions of eq.(4).

Proof. Equation (15) indicates directly that
37-9=¢, (16)
i.e., that it is the unit matrix. On introducing the reciprocal matrix grl, we

can then also write
87=97 3 =@ (17)

From egs.(16) or (17) it follows directly that
Z—det8+0.
The statement that 3 is the solution matrix of eq.(L) is derived as follows:
According to eg.(16), we have

39 +3"W =0,



i'eo, with eqo(l3) Zlo
—-8T'9=3"wy, -—3"'=38"uPY*=374,
so that
r _ __ouT
F=-%3 (18)
which coincides with eq.(h).
Thus, theorems 5 and 6 yield directly:

‘'Theorem 7. A general fundamental system of solutions of eq.(}) is repre-

sented by the matrix
8+ =3 -C=@Y)"-¢ (19)

at arbitrary constant matrix @ with a determinant C differing from zero.

Denoting
and L) =20 — @)y (20)
Lrg)=— 38 _gT(),, (21)
the following is valid for two arbitrary vectors n(t) and 3(t):
TLO) — (L*6) T 9=12 67-v) (22)
and
(LONT-5— 0" LoG) = o (97 -3). (23)
Therefore, the (expanded) Lagrange identity
Z6Tm=0="L 7.y, (21)

is valid for the solution vectors p and 3 of egs.(3) and (L), respectively.
Analogously, the following is valid for the solution vectors of eqgs.(1l)

and (4):
LT =", ST )= (25)

Section 3. Systems of Linear Differential Equations with
Periodic Coefficients

In this Section, the periodicity stipulation (2) is essential.

Theorem 8. The homogeneous systems (3) and (L) have the same number of p

9



linearly independent solutions periodic with P (O < p < n).
Proof#. Let p be the number of linearly independent solutions of eqg.(3),
periodia with P. It is merely necessary to demonstrate that eq.(l) has exactly
p linearly independent solutions that are periodic with P, since the conclusion
can be reversed in view of the fact that eq.(3) is the adjoint system to eq.(h).
Case 1. Let p = n. Here, the entire matrix 9(t) is periodic with P so
that also the matrix 3(t) according to eq.(15) will be periodic.
Case 2. Let 0 <p < n. Assume that the yv(t), withv =1, 2, ..., o, /11

are periodic with P. Then, the following is valid for any arbitrary point t,:

O T =0, +P) —0.)F0 for p=g+1,...,n. (26)

If the equal sign were present in eq.(26), the periodicity of thispy (t) with
the period P would follow from eq.(3) with consideration of eg.(2). In the
following, let t; be an arbitrarily selected but then retained point. Integra-
tion of the first equation in the system (24,) over t; and t; + P will yield,
for each k =1, 2, eee, 1,

HOE o )=0 for »=1,2,...,0. (27)
These are n linear homogeneous equations which have at least the p linearly in-
aependent solutions pv(ty ) for v =1, 2, ..., p. It will be demonstrated that
no further solution vector wy, linearly independent of this, can exist. Con-

versely, let us assume that, for such a u;, the following is also valid

H Ok P y=o0 (28)
Then, let us define a vector u(t) from eq.(3):
W with u(ty)=u,. (29)

dt

% By R.Iglisch.
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For this vector U(t), the first equation of the system (24), by integration
over t; and t; + P for k =1, 2, «es, n, will yield
b+ Plulty+ P) — 3l () u(t) =0
and, after subtraction of eq.(28),
#t+ P)[u, + P)—u()]=o.
This represents a linear homogeneous system of equations with a determinant
differing from zero; consequently,
u,+P)=u(t)

must be valid from which, because of egs.(29) and (2), the periodicity of u(t)
with P is obtained. Consequently, because of eg.(26), uz =u(t,) is linearly
dependent on h1(ty), eee, hy(ty)e

Thus, we know that the system of equations (27) has exactly o linearly in-

dependent solutions. Therefore, the matrix
B3O = mOh a0l @t

has the rank n - p. By suitable numeration, it becomes possible that exactly

1+P
1

ty+P
31(t)?‘1 , eees Bn-p(t)I: are linearly independent. The remaining of these

vectors can be linearly expressed by these vectors:

n—p
WORT =L b@RTT for p=n—g+1,...n

(30)
Consider now the vectors
m=1,2,....n—
=0 ={::IZ —-2:4:,_.,50(0 ::: m=n—g+1i ...g.n- (1)
Since /12

Det (3(2), ..., 4% (8)) = Det (5 (%), ..., 3. 1)) +0

it follows that the n vectors (31) are linearly independent solutions of eq.(})

for all t (see also theorem 4). The B*V(t) withv =1, 2, ¢ee, n - p, because

1



of the linear independence of the vectors
0]
including their linear combinations, are‘not periodic with P. Conversely, the
3f(t) withp =n-p *+1, «ee, n have 'exactly the period P,'as-reaPiLy seen
from egs.(30), (4), and (2). This yields the proof for our case 2.
Case 3. Let p = O, If eq.(L) had a solution periodic with P, also eq.(3)

would have such a solution according to the above statements.

Section 4. The Resonance Case

Pruof for Theorem l. Thus, let 3(t) be a solution vector of eq.(l) peri-

odic with P, for which eq.(5) is valid.

In contrast to the argument, we make the assumption:

HUES3 (32)
for all t and for an arbitrarily selected solution r(t) of eg.(l). An integra-
tion of the first equation in the system (25) between t and t + mP, with arbi-
trary positive-whole m and taking eq.(5) into consideration, will yield

O [r¢+mP) —z @] =m-|C|. (33)
Because of the periodicity of 3T(t), a restriction of the following form exists

for all t:
57| < D. (34)

On the basis of this and from eq.(33), an estimate

D-2Ezm|C|, Ez ™Il
2D

is obtained. At sufficiently large m, this furnishes a contradiction to eqg.(32).
The result can also be formulated as follows:
Theorem 9. In the resonance case, for each solution vector r(t) of eq.(1)

12



and for each interval
to<t<ty+mP (35)

at least one point t* exists for which
m|C
ez il (36)

vanishes with C from eq.(5) and D from eq.(3.).

Section 5. The Principal Case

In this Section, it is assumed that eq.(4) has no solution 3(t) periodic
with P. First, we will prove:

Theorem 10. If 31(t), eee, 3,(t) are linearly independent solutions of /13

eq.(4), we have
(@t

D(f) = Det[ # "

@7

+0 foral t (37)

Proof. If, for a special quantity t = tz, we would have D(tz) = O in
contrast to the argument, then n numbers o,, o2, +.., ¥ with of + ... %02 >0
could be so determined that

Sa T+ P) = S aaT k)
Putting r=1 -

10 =S80,

we would have
solta+ P) =30 (ts)-

However, according to egs.(4) and (2), it would follow that
3o(t + P) =3,(t)
for all t, in contradiction to the assumption.

Proof of Theorem 2. If p(t) were a solution of eg.(l) periodic with P, an

integration of the first equation in the system (25) between a fixed point ta
and ta + P would yield
13



4L+ P

& @Ot rt) =‘_fs.’(t)f(l) dt for v=1,2,...,n. (38)

Since the coefficiént determinant of this system of equations, according to
theorem 10, differs from zero, the quantity r(ts ) can be uniquely determined
from this. Let us assume that eq.(l), with these initial values at the point tg
is solved, thus yielding a solution vector r(t). It only remains to be proved
that this r(t) is periodic with P. In view of eg.(2), it will then merely be
necessary to determine that, automatically,

ta+P) =z(t) (39)
An integration of the first equation of the system (25) over ts and ts + P will
yield, for v = 1, 2, ses, N,

4+ P

b+ P)xl+P) -5 ) ) =3 0@ de.
On deducting eg.(38) from this, the linear system of equations will read

3+ P i+ P) —rt)] =0 (40)

with a determinant differing from zero, analogous to eg.(8). This leads to

vanishing of the bracket and thus of eq.(39).

Section 6. The Exceptional Case /1,

If eg.(4) has exactly o linearly independent solutions 1(t), ..., 3,(t)
periodic with P, for which

t+P

!J@nﬂu:o, r=1,2,...,90 (11)

is valid, then the determinant (37) will exactly have the rank n — p. Of the

system of equations (38), the first o equations (for v =1, 2, «.., P) are

automatically satisfied since they contain only zeros. From the remaining

1L




equations (38) with v =p +1, ..., n, a total of p linearly independent vectors
), i), - 22l (42)

can be determined, supplemented by the corresponding initial values (42) by

solving eq.(1):

0, 20, ... 220 (13)
That, for each of these ry(t) (b =1, 2, +e., 0),
2+ Py =zl (b) (14.[4.)

is automatically obtained follows from the system of equations which is derived

analogous to eq.(,0):

W76+ P [+ P) — gh(6)] =0 (15)

with a determinant differing from zero. This means that all thesea:j(t) will
have the period P. Thus, we can make the following statement:

Theorem 11, If eq.(a) has exactly p linearly independent solutions peri~
odic with P, for each of which eq.(6) is valid, then eg.(l) has a p-parametric
family of solutions periodic with P.

This result agrees with the trivial fact that all solution vectors of
eq.(1l) periodic with P are obtained by adding to one of these vectors all solu-

tion vectors of eq.(3) periodic with P.
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PART II /17

THE RESONANCE CASE IN SYSTEMS OF n NONLINEAR ORDINARY
DIFFERENTIAL FQUATIONS OF THE FIRST ORDER

Section 1. Problem Formulation, Principal Results

As an extension of investigations made by R.Iglisch (Bibl.l), we consider
here the nonlinear differential equation system

B gy g R G=1.2007) (1)

which, under introduction of the vectors

% k(2 gty .-, u,, 1)
N R AR UE e TR R (2)
%, k() Ealth, .-, %y, 1)

can be written in the following form:

—'{i?:‘-=g(u,t)+f)(t) (3)
Let the periodicity assumption

a(wt+ P)=g(uf), B{t+Py=5H(). (%)

be valid. For the functions g, in view of the variable v, let an expansion
in Taylor series up to terms of the second order be possible, and let y(t), for
example, be continuous.

Assume that a solution uo(t) of eq.(3) periodic with P is known:

Do —g(ue. )+ H0),  uelt+P) =n(0). (5)

Then, at a minor modification of b(t), we will investigate the solution vectors
u(t) adjacent touo(t) of the system of equations

24 g0 +50) +10) (6)
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at sufficiently small [81; here again, we assume

fe+ P)=i0)- (7)
Using . /18
() =up(t) +z (8 (8)

eq.(6) will be transformed, after subtraction of eq.(5), into

%=g(uo(t)+z(t).t)—g(uo(t),t)+ﬂf(:). (9)

Of these, the solutions with small lx(t)' at !Bl will be investigated.
As will be demonstrated in Section 2 where a transformation of eq.(9) is
to be made, the role of the homogeneous linear system of equations* is taken

over by the system

dy (10)
D _ w0
with the matrix (i, k =1, 2, see, n):
3 \ 0 é 0 o ( ovt)
() = (aul0) - (*0t ) = (P00 OG0 P ), (11)
Obviously,
A+ P)- AWY. (12)

The homogeneous system, adjoint to eq.(10), will then read as follows if

the transition to the transposed matrix is denoted by the superscript T:

B w00 (13)

at
Theorem 1 (Resonance case). If eq.(13) has a solution vector r(t) periodic

with P, for which
t+ P (1, )
féT(l)f(l)dt = CF0 ~+

is obtained, each solution x(t) of eg.(9) - independent of the initial values -
will assume values with increasing t whose absolute amounts are at least of the

—
order of magnitude of #|8|« The proof is given in Section 3.

% See also another report by the same author (Bibl.2).
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Then, we obtain the following in Section 4:

Theorem 2 (Principal case). If eq.(13) has no solution vector 3 (t) peri-
odic with P, then eg.(9) will have solution vectors r(t) for each sufficiently
small B which, for all values of t, retain the order of magnitude |B|, i.e.,

for which
[z(8)] < Const. |B| (15)

is valid for all t, for example, the uniquely existing small solution periodic

with P:
tt+ P)=c().

This only leaves the exceptional case to be defined which states that

eq.(13) will have solution vectors 31(t), «.e, 3r(t) periodic with P at 1 <

< r €< n but that, for all these periodic solutions, the following expression is

valid: /19

I+ P

fa@tmdt=0 (e=1.....7) (16)
In this case, it is impossible to make general statements on the functions

gi (U, t) without further assumptions.

Section 2. A Transformation

Putting
Wit A) = uo(t) + Ar (), (17)

will yield
u(t,0) =up(t), u(t1)=1uolt) +r(t). (18)

When applying the Taylor series with respect to A to the difference on the

h

right-~hand side of the it component equation of the system (9), we obtain

1
Bilto 5 ) = gilng, ) + Bl g [ FBLERD (g gz
°

or, if % (t) are the components of the vector r(t),

19



am+aﬂ—mwﬁ=ifﬂ&ﬂh+
=1

+f Z PeWh DD 4r1— 2 da.

8u¢ Dy

(19)

In addition to the matrix A(t) from eq.(11l), we next introduce the "tensorm

T(u(t, A), t) whose n components are to represent the matrices (k, £ = 1, ..,

T, (u(t, 2), 2)
T(u 2,4 = T0EA.9 -
T, (u (;, 2.9

Then, eq.(9) can be written in the following form:

1
250 _a@+610 F[TOTEED N0 - HdL (22)
Of these, at sufficiently small € and Bo, solutions will be sought with
ltlse at BB, (23)

It should be noted here that the tensor

T@mmﬁ=TMmJL
has the period P:

T(ug(t+ P), 2+ P) =T (u, (). ). (21)

From this fact, in combination with the first relation (23), the existence /20
of a finite constant M follows in such a manner that, for the integral in
eq.(22), the following is valid:

| ofs’(t) TEd. )0 02 dz[ < M- (max g (4))* (25)
For this, it merely must be assumed that all second derivatives on the right-
hand side in ed.(20), within an interval of t; S t < t; * P, are restricted for

all values |u(t, A) —uo(t)| < € of the first argument.

20



Section 3. The Resonance Case

Let the adjoint system (13) have a solution vector 3(t) periodic with P,
for which eq.(lh) is valide In contrast to the argument of theorem 1, we are

making the following assumption:

lt@® < NV|B| (26)

for an arbitrary solution ¥(t) which satisfies the first stipulation (23) for
all t with a finite constant N, to be determined later. Analogous to eq.(33)
in another paper (Bibl.2), egs.(22) and (13), for an arbitrary positive-whole n
with C, will yield on the basis of eq.(14):

STt +mP)—x()]=mC B+
-¥-‘+f:T(T)jET(z)T(u(T, Ayl (01— Adidr. (27)

Because of the periodicity of 37(t), a constraint of the following form applies

to all t:
ls" @l =D. (28)

If egs.(28), (26), and (25) are used, an estimate according to eg.(27) will be
D-2N ||} + DM N*|8|m P=m|B|(C|

or
2DNzZm|j}-B (29)

with
B=|C)] —DMN*P>0. (30)

If a sufficiently small constant is substituted for N, then B will be positive.
For each B # O, the quantity m can be selected so large that eq.(29) will con-
tain a contradiction. This proves that the assumption (26), in combination
with the first relation (23), is impossible and that, therefore, the following
theorem applies:

Theorem 3., In the resonance case, four constants € M, D, N exist, from

which because of eq.(30) a positive B can be determined in such a manner that

21



each solution r(t) of eq.(9), within each interval of the length ;ﬁigp ’

assumes at least once a value so that

|z ()] > Min (e, N V[B]) (31)
is justified.
Lemma., If B is restricted by /21
|ﬂ|<W£:_' wi th N*<-D']—3IP [see eq.(30)]
then, in each interval of the length ~§%ﬁ P, the following estimate will

apply for at least one value of t:
lz®] > NVIB]. (32)

Section L. The Principal Case

In the following, we will require the main theorem on implicit functions

as an auxiliary theorem.

Auxiliary theorem l. Let the vector

vl(al """ a»’ﬂ)
v(a,B) = v(a, ag, ... a,, B) =| V2@ B
)
v {ay, ..., a,,B) (33
in a certain vicinity of the quantities
=0, a4,=0, ..., a,=0 B=0

possess continuous first derivatives to ay and let this same vector be continu-

ous in all n + 1 variables. In addition, let

{0, ...,0,0) = 0; (34)
finally be the functional determingnt
2l 00 o k=1,2m). (35)

day

Thus, for each sufficiently small a, a constraint Bp will exist such that, for
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each B with |B] < 8o, a solution vector a =a(B) of the systems of equations
v@p) =0 (36)
exists uniquely, for which |a| S ape Fof the proof, see for example another
paper (Bibl.3).
This auxiliéfyatheorem'is“apblied as follows: Each solution vector? (t)
of eq.(9) is characterized by its initial values:

% (37)

r(0)=a= ,

. aﬂ
i.e.,

= B D).
r=zlpi?) (38)

With respect to t, this vector has the period P if and only if

v(a,f) =z(a.f; P) —z(a,p;0)=0 (39)

This corresponds to the argument (36) of the auxiliary theorem. For B =0, /22
the null vector represents the solution of eq.(9); consequently, eq.(3.) is
satisfied since then also a is the null vector. The assumptions as to deriva-
tion and continuity of the auxiliary theorem are ensured by the following
auxiliary theorem, in accordance with known theorems as to the dependence of the
solution vectors of eq.(9) on the initial values a and on the parameter B
(Bibl.s).

Auxiliary theorem 2. Within the interval 0 < t < P, for a given ¢, one

positive €; and B; each can be determined such that the solutions r(t) of
eq.(9) satisfy the estimate |r(t)| < € in the entire interval if only |£(0)| <
< € and lﬁ, < B; are selected.
In accordance with eg.(39), it is necessary, for application of the auxili-

ary theorem 1, that €, < ap as well as B; < Bp. A differentiation of eg.(9) to
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ap indicates that the vectors

or () =2LPD  goq,2..m (40)

are solutions of the system of equations

%=58(t)t)‘ (ll-l)
with the matrix
B ()= (L“;’;F‘M) Gh=1,..., n). (12)
Therefore, the vectors
(Y = 280008 g, (13)

2a;
are solutions of eq.(10) since, in that case, eq.(L42) passes over into eg.(11).
The vectors (43) are linearly independent since their determinant for t = O is
the unit determinant [see also theorem ) in another paper (Bibl.2)]. Since, in
the principal case, we make the assumption that eqg.(13) and thus also eq.(10)
[see theorem 8 (Bibl.2)] has no solution vectors periodic with P, it follows

that [see theorem 10 (Bibl.2)]

vy (@)t "
-+ P

pet| B | 4o.
R (44)

A brief examination of eg.(39) indicates that this is exactly the condition (35)
of the auxiliary theorem. Since all conditions of the auxiliary theorem are
proved to be valid, its argument - in our case, eq.(39) - can be considered as
also proved.

Therefore, the following applies:

Theorem L. If eq.(13) has no solution vector z(t) periodic with P, con-
straints €; and 8; will exist for a given € such that an initial vector r(0)

with |¢(0)] < €; exists for each B with |3] < By, so that the solution r(t) is

periodic with this initial value r(0) and satisfies the uniform estimate

2L



le(£)] = e

This represents a portion of the theorem 2. To prove this theorem /23
completely, we will need still another theorem.

Theorem 5. Assume that a finite constant E exists such that, at suffi-
ciently small |B|, the following will be valid for this solution r(t) of eq;(9)

periodic with P:

[t S E-|Bl. (45)
Proof. If %1(t), ese, 3a(t) are linearly independent solutions of eg.(13),
the following expression is obtained under utilization of the periodicity of

r(t) analogous to eg.(38) (Bibl.2) for v =1, ..., n:

t+P

GBI+ P) =00 = ﬂ'f (D i(n)dT +
(16)

t+ P

-+-‘f5,r(r)ofgr(r) Tu(r, A, tye(x) (1 — A dAde

[see also eq.(27)]. The determinant of the coefficient matrix on the left-
hand side, according to the assumption of the principal case, differs from zero
[see eq.(44)]. Therefore, the linear system of equations (46) can be solved
for the components xy(t), eee, X, (t) of ¥(t) on the left-hand side, using
Cramer's solution formula. If, at fixed t,

x = Max [x,(7)] rv=1,2,...,m), (lL7)

tstst+ P

then an estimate of the following form will be obtained in this manner:
x< K|B| + L - (max|z()])* (18)
with two finite constants K and L, taking eq.(25) into consideration.

Since
max [ (t)| < Ynx

it follows from eqg.(48) even more so that
FeCes max |5 ()] < }n K|B| + Y L - (max £ ()]),

max (g ()] [1 — }» L - (max | (0])] < Yn K|B].
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On the basis of theorem /., we can then assume that the expression in brackets
is positive. For example, for eéivkL , this expression becomes = -%T.
From this, the estimate (45) with E = /7K is immediately obtained.

Instead of using Cramer!s rule for the solution, it is naturally also
possible to solve eq.(46) for r(t) by left-hand multiplication with the matrix
inverse to [3y(t *+ P) = 3v(t)] and then to make the estimate by means of
Schwarz! inequality |r(t)|. This will also yield eqe(45).

v
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PART III /27

STUDY OF THE RESONANCE CASE IN SYSTEMS OF LINEAR
ORDINARY DIFFERENTIAL HEQUATIONS

Section 1. Introduction

Previously (Bibl.1) we investigated the linear inhomogeneous differential

equation system

. fliore + £ (1)

with a n-row matrix %(t) which, for simplicity, was assumed as being continuous

and having a continuous n-component vector f(t) of the same period P

s +» =Ly , A&+ 2 = A (2)
The corresponding homogeneous system then will be
[y (3)
and the adjoint system
a T
d.. gy, (1)

where the superscript T denotes the transition to the transposed matrix.

In all, three cases were differentiated: The principal case is present if

eqe(4) has no solution periodic with P; the resonance case is present if eg.(/)

has at least one solution vector 3(t) periodic with P, for which

P
J' JT(T)4(r)d2‘=Cfo (5)

is valid; the exceptional case is present if eqg.(l) does have periodic solu-

tions 31(t), 32(t), «»., 3p(t) (1 < p < n) periodic with P but if the following

is valid for all these 3, (t):
P -——
J 3/» () F(D)d T =0 for m= Ts250ees § o (6)

Whereas, in the principal case as well as in the exceptional case, solutions
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of eq.(l) periodic with P, i.e., remaining limited for all values of t, are in
existence, the values of all solution vectors r(t) of eg.(l) tend toward in~
finite with increasing t in the resocnance case, independent of the initial
values. The individual steps in this process will be further investigated in
the present paper.
We use the following notations - /28

G+ By D B e G OGT @
for denoting a fundamental system of solutions of egs.(3) and (L), respectively
[see eq.(17) in a previous report (Bibl.l)}. In the method of variation of the
constants*, using the abbreviation

208 = Y. ©, (B) (¥e1,2pee0im) (8)

the following argument is constructed for the solution of eg.(1l):

x
Tz (8) = nz: 2, () = 19(t). £ (%)

y=1

(9)

In the present report, an argument similar to eq.(8), namely,

)

8
t(t)' § t*(t)s sén

Y= 1

[see eqs.(77) and (78)] is discussed, where the g;y)(t) are composed in a
suitable manrer from the gC(t). In the resonance case, statements can be made
on the behavior of these vectors giv)(t) for t increasing without bounds. Here,

the matrix

4/ - L9_‘1(t) .19(17 + P), (10)

which had been discussed in Section 2 plays a decisive role. By a suitable
transformation, the system (1) can be brought to a 'mormal form" (Section 3)

with constanrt coefficients, by means of which the study of the vectors xiv)(t)

* With respect to the method of variation of the constants, see footnote on
P- 58,
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can be made much more concise (Section 4). Making use of this method, four
numerical examples will be given at the end of this paper (Section 5).
A brief report, to be published soon, will apply the above considerations

h

to the case of an ordinary differential equation of the n®? order with periodic

coefficients. In that paper, additional examples will be given.

Section 2. The Matrix @ /29

Theorem 1: The matrix $, defined in eq.(10), is a constant regular matrix,
i.e., a matrix independent of t, under the first assumption [eq.(2)].
Proof: In view of eq.(7), eq.(3) can be written in the form of .

19 L)Y (11)

Then, a fundamental solution matrix of eq.(4) will be as follows [see (Bibl.l),

eq.(17)]: ?_ (3oboo oo B - (19".1)1'. (12)

which means that
i
F--w3. (13)
is valid. According to egs.(10), (12), (13), and (11) we then obtain

;y' -(?T(t) 1g.(t + P))‘ngT(lt)g(t + P) +3}‘(t) Q'(t +P) =
- _}T(t) DL 19t + ) +2f(t).ﬁut + DYt + P) -0,

when taking the first relation (2) into consideration. Consequently, $ is a

constant matrix. That its determinant differs from zero follows from the non-

vanishing of the two determinants of the matrices on the right-hand side of

eq.(10).

Theorem 2: If we pass from a fundamental solution matrix n(t) of eq.(11),
on multiplying on the right-hand side by a regular constant matrix §, to a new

fundamental system
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Y - M.l (1)
[see (Bibl.l), Theorem 5], the following relation will be valid for the matrix
¥ which had been formed in accordance with eqg.(10):
¥ e r - (15)
Proof: From eq.(10) and (14), we obtain
[ -1 o -1 -1 -
2 -ygo (£)1°c + P - L7 1g7(0) W(o + PL =L
This means that, by a suitable selection of the fundamental system 9(t), the

matrix B can be transformed intc any normal form which can be produced by a

similarity transformation of the type of eq.(15).

Theorem 2: Let the constant matrix #§ be given in the Jordan normal form /30

[see (Bibl.2), Sect.l9.1]

1
'g ly. .. (16)
’4_7 = . with {' T ’
EA 2
where one elementary component 8y of the order my 2 1 in the main diagonal has
the eigenvalue Ay and contains ones in the next higher diagonal (zeros are not
entered). It is obvious that

n=m1+m2+...+m8. (17)

Then, it is possible to form a matrix:ﬁ: with any real number g, so that

*-

BT (18)

is valid and that ﬁf has a normal form of
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12

(] -
“ YRR A
x RN :

: .“-‘.‘... :(O
£ ' % RN
- : 3 ST e
’ . x vith &,- '..Ar
ag_ *y
where
W v
“y = 3 1nl, with --‘é-<7(u,) =
and P
/5')- ( - '1)"'-‘| ——1—-,_,— for = 1,2,...m~ 1.
Y r.q-A,
Proof:

Let us form [see also, for example, (Bibl.3), pp.333/4]

in g = 1n(},,{y +.9;) R

where Gy is the unit matrix of rank my while the my-row matrix

~9, o_‘l.
y- ...

has the rank my - 1. By expansion in series, we obtain¥*

1n % - 123, %) + 1n( F, +_1_,2> -
=(1nA,)- £,+1n<f =)

= (1n ly ) {y z[ ;J% Fooe
‘a2 1 -1 {-1)'2"——'——-11 1
» 1, ;_I" e (n;-‘l).l:‘y_

%* The formula

1n(a, %) = (1n1d,). &,
used here is equivalent to

Lo
3,8 =SS T, =, E

as is readily verified by means of a power series.

On the basis of this fact
we can also write in abbreviated form:

¢d‘ {’ = a“ {V
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(21)

(22)
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‘Un-",, 1

45 1 ... (=
R (m02 77 2
. . .
. i
. a,
1,

[see also, for example (Bibl..), p.82]. For this, it is suggested to use the /32

principal value of the natural logarithm 1n, i.e.,

—

~TJ@mA,)E T, (24)
which agrees with eq.(20). Taking egs.(2l) and (19) into consideration, we

will obtain

g -k, (25)

qv °*

-] =Y

from which, by means of expanding the exponential function in a series [with
respect to the convergence, see for example fBibl..), p.119],

* -
¥ . 6&1' 1 (26)

is obtained. From this, eq.(18) with § can then be taken from eq.(19) since,
in forming the powers of ﬂf, the elementary components ﬂfv do not exert a mutual
influence.

By an additional collineatory transformation, the matrix ﬁ_:' in eq.(19) can
be brought to the Jordan normal form. If § represents the matrix of this simi-
larity transformation, i.e.,

L 3
A LT AL,
then P is transformed into ¢t 6, as readily demonstrated by expanding the ex-

ponential function in a series. We can now write
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A d’e._ with d;» - - Y (27)

This will yield the following:
Theorem 4: The matrix §i can be brought to the following form by a simi- /33

larity transformation: £

’#-e

q "¢ (28)

with & from eq.(27).

Lemma: If, specifically, all elementary components of the matrix § have

the order 1, also §; will be a diagonal matrix.
Definition: Below, we will replace the arbitrary number q by the period P

of the coefficients of eq.(1l); in this case, we can write in abbreviated form:
A R A K (29)
p' £} p- P = e .

Theorem 5: By means of the constant matrix & [see eq.(29) and (27)], the
fundamental system m(t) of eq.(3) can be written in the form
lg(t) ) @(t).cft with ﬁ(t) =(‘71m>f/n;..., ?‘u)) (30)
where #(t) has the period P. Analogously, the fundamental system 3(t) of eg.(})
can be brought to the form

?At) =i (e '0€'t)T (31)

( ) = ( @ ) = ( ‘f/‘( )9 2( )1'001 D( )) ( )

also has the period P.

Proof: It is to be demonstrated that, in the argument (30),

ORI CONE e (F(0), B0yeeny H(0) (33)
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has the period P, Making use of egs.(10), (29), and (30), we obtain

@(t + P) -.lg(t + P)e-ip. e-it =)9(t)# e-d-r,

~-Rt
. e - (t).

Then, the relations (31) and (32) are directly obtained from egs.{12) and (30).
The conventional way of constructing the constant matrix &, described in
developing the theorem 3, usually is quite time-consuming. That this procedure
can be less cumbersome in certain special cases is indicated by the following
theorem,
Theorem é: If the matrix %(t) with its integral from O to t, periodic

with P, is transposable, i.e., if the relation

¢ ¢
Oy [0 crrar- [ ar- v (31)
] [4
exists identically in t, then the constant matrix
P
*x (35)
&3] pwar
will yield ° AL
&t - e
(36)
To this belongs the fundamental solution matrix
¢
S Berstr wx A #
Y - e =¢ e (37)
with the following matrix, periodic with P,
xx f(our,_du)-lz
) = 4 . (38)

Proof: Below, the two formulas which can be proved by expanding the ex-

ponential function in a series are used [see also, for example (Bibl.y), /35

% I wish to express my thanks to Dr.H.Eltermann for developing the idea of
theorems 6, 7, and 8.
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b *[ 5‘ [ ~
. -e e , if BLLE (39)
(eIH” = é&u.)ﬁ:h:ﬁ:n-fm, if 5'5=5‘5'I’ (40)

First, it can be demonstrated on the basis of eq.(40) that m(t), according to
eq.(37), is a fundamental solution matrix of eg.(11). [But note: 9(0) =€.]
The constant matrix § (see theorem 1) can then be calculated from eq.(10) with
t = 0, yielding P
¥ - - ;fﬂlm“ , (11)
from which eq.(36) is obtained with eg.(35).

It only remains to prove that the matrix $*(t) defined by the argument

(37) in accordance with eq.(30), can be written in the form of eq.(38). Because

of eq.(35), ¥*¥(t) has the period P, since
P
* 2
[ (B £z - 1 (42)
0
The relations (37) and (38) can be reduced to the identity

ftp[n')'(z ,f( (z)- d*‘)d‘: 45“,4

e ce e ) (43)

AL

if it can be demonstrated [see eq.(39)] that the matrix & is commutative with

t
the matrix Lr A(T)dr, i.e., if
)

? t ¢
a/ a(r)‘(r.\/ ﬁ(o—)la— = /ﬂ/.-)./.- ./Pﬁ".?)‘/z (ML)

is valid. Since this equation is directly understandable for t = O, eq.(A4})

will be obtained by differentiation to t, based on the commutability relation
? ?
jﬂrz;dz . 17[m = pl(t) -fﬂrr)(r . (h5)
-] [
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Taking the periodicity of % (t) into consideration, we can calculate /36

P ¢+ P te P
pl(t)-/ﬂ(ru(:' = ﬂl(ﬁ (/ ﬂlft)t/l'— fﬂ(‘zu{r)s
0 (P ° 4 (46)

= ﬂ(HP)j &rr)a/r - ﬂlw . j’ﬁrz;lz
° o

and, taking eq.(3.) into consideration,

éE+P

zf Qimdz ﬂ(,(tﬁ’)—fﬂ(n-{z Dl =
(/ HierdT ~ f&/')‘{ )ﬂl(‘)—fﬁl('nl‘z ﬁlﬂ

which proves egs.(AL) and thus also eq.(43).
By a similarity transformation, the matrix (35) can now be brought to the
Jordan normal form, indicated in eq.(27), in such a manner that the sequence

of ¥, X3, «.., % is the same. This will yield a matrix &°, for which

edof - - e‘é? (47)

with & from eq.(29) is valid. The eigenvalues of the matrices (L7) thus are

mutually equal. Accordingly, the eigenvalues oy of ft and 8" can differ at most

with integral ny. Thus, we have

by Ny

\&}1 %
AR U B B 4 (18)
.@ ?
[see also eg.(27)], if Gy denotes the my-row unit matrix [see eq.(17)]. This
will lead to the following theorem:
Theorem 7: By a similarity transformation, & from eq.(35) can be /37
transformed into a matrix §° which is correlated with eq.(h8) over § from
eq.(29), so that § can be calculated.

Theorem 8: The assumption (34) for the theorems 6 and 7 can be replaced

by the stronger assumption

37



L A -0ce e (19)

at arbitrary t and T.

Proof: It is to be demonstrated now that eq.(3h) (with arbitrary lower

limit) follows from eq.(49). We calculate:

t 14 £
m(p.f Mtr).l-: =jﬂllt)ﬁl(wlz =fam ﬁ[mlr:jﬂllr r.ﬂllt). (50)
t b 4 &
Section 3. Transformation of the Differential Equation System /38

to a Normal Form

Theorem 9: By means of the transformation
&) = @) - Wt (51)
with #(t) from eq.(33), the system of differential equations (1) is transformed
into the following system [Floguet's theorem, see for example (Bibl.3),
Chapt.III, Sect.5, and specifically p.75]:
¥ -R 0 b (52)

with [see eq.(32)]
T
£H(t) = Lp(t) - A () (53)

which has the constant matrix @ according to eqs.(29) and (27) and also has a
b(t) periodic with P. We will call eq.(52) the normal form of our system of

equations (1).

Proof: 1In view of eg.(32), a substitution of eq.(51) into eq.(1l) and
consideration of eq.(53) will yield
v’-é"fﬂ@’??m t &
It then remains to demonstrate that the matrix to be applied to b is equal

to 8, i.e.,

$'- ho - 34 . (54)

In fact, repeatedly taking egs.(33) and (11) into consideration, we obtain
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8 (hG-F)- 57 (0g-1g'c g Pt &)

- - - At (55)
~§7(0g-mgi*tip &N k) A
Theorem 10: The homogeneous system /39
o - Ao (56)

conjugate to eq.(52) has no other solutions periodic with P than solutions of

the form
40 = Coupg (57)

Naturally, an analogous statement applies also [see eq.(12)] to the system
A S (58)
adjoint to eq.(56).
Proof: The system of equations (56) is resolved into the mutually inde-

pendent systems

“py' - A we, ( 7= 1,2,000,8). (59)
Here, we then have
w’
uy
w =\ (60)
w‘

Such an individual system (59) possesses the following my-dimensional solution

vectors A&t
0, (t) = e -z, (61)

with an arbitrary constant vector cy. Because of [see eqs.(27), (23), and

footnote on p.32]

o1l
ﬁy:d,{y+,\zw:th.\7;= . .
A 4 ¢ £
[ 2
eq.(61) will be transformed into tf, It ot -
w0, (t) =e .e .L=e .
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Because of eg.(20) (with g = P), the vector (63) is periodic with P if and /1,0

only if

20 D

«,= 0 and =

(é4)

[« ]

where ¢y has been normed. The only normed solution vector of eq.(59), periodic
with P, will thus be

.
(o]

.
uw, - °> if a =o0. (65)

The corresponding solution vector m(t) of eq.(56), which is periodic with P be-
cause it is constant, will have, except for a 1 at the point

(¥) =my + Dy + eue +m 4 + 1 (66)
with @y = 0, only zeros as components. The n-component solution vector of
eq.(56), conjugate to eq.(65), will be denoted by W(yy . This means that in
eq.(60), allpy = O must be used at » 7 v, so that My will have the value
(eq.(65)]: .

R V) R S (67)

This will yield the auxiliary proposition:
Lemma: The constant solution vectors of eg.(56), i.e., the vectors peri-
odic with P, are linearly composed of the vectors (67) withiy from eq.(65).

Analogously, the normed constant solution vectors for eg.(58) are

[¢]
“‘:v = .é' 'Y lf dy = 0
£ ° (68)
o
with the my-component vector /11
2
", = : . (69)



where Wgy3 , in addition to zeros, has only one component 1 at the point
Ev] Sy +m, 4+ .. +W, with oy = o0 . (70)
Taking egs.(30) and (31) into consideration, we obtain directly:
Theorem 11: The solution vectors h(t) of eq.(3) and 3(t) of eq.(4), peri-

odic with P, can be written in the form of

RO JOR ORI #CT (1)
and, respectively,
B - L0 st - 0

where (v) and [v], respectively, have the meaning of eq.(66) and (70).

Theorem 12: For the systems of differential equations (1) and (52), we
always have simultaneously the principal case or the resonance case or the ex-
ceptional case.

Proof: According to theorem 11, the solutichs of egs.(L) and (58), periodic
with P, are at a one~to-one correspondence. In addition {[see eqs.(S), (53),

and (71)], the following applies:
) 4

’ —-—
T 7 -1 7
JJ[’Q(!) Acerd T :] f[’sz>(L/——:-;)) B$iz) dr = Z_[_L_2
o ‘ ? (72)

T
< [4 g
= 7”:7_1 Bexrdz =f 2 i
0

o
where the conventional notation was used. Now, the correctness of theorem 12

can be read directly from the second paragraph of Section l.
The matrix #(t), defined in eg.(33), is broken up into the sum of s n-row

square matrices

B () 74 674 g (73)

v), in the columns with the numbers

where the matrix &

(»)y, (¥) + 1, ..., C¥] contains the vectors 7 LE)seees £ ;t)

but otherwise only zeros*. The system of differential equations (52) decomposes

# Here, the notation of egs.(66) and (70) has been used for the first time
without the restriction @y = O,
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into the independent subsystems

/
U3 =&€y ©, + '6;,(1;), ¥= 1,2 400098, (7&)
where we always have the dimension my; here, py(t) contains only the components

(V), eeey [V]1 of 8(t). Then, we have

10, ()
w5 (t)
© () = 2 ) + 0Py v 2P0, (75)
%L (6)
if the n-component vector
9
(2] 6
16 (B) = 1008 s Y= 1,2,...8
o (76)

is defined.
It would seem logical to introduce the vectors
[¢7] [£2) (£ 2] (14
Zh) = Pledae (6) = (8 (e) =

(77)

g _
. £2(6) Vo (t)
/u,:(il
in which, however, all n components may differ from zero, for which reason the

denotation was supplemented by an asterisk. This will yield:

Theorem 13: Each solution y{t) of eq.{l) can be written in the form

s
(t) = o)
() E Tx(t) (78)

v="

with ¢ ¥ (t) from eq.(77).
Lemma: If, specifically, § has a diagonal form, eq.(78) with (v) = [v] = v

speciali: =s to

pel [t) n —
HAOED I MOED IR AR/ MO (79)
¥=1 A=
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Resolving, in accordance with eq.(73), /1,

PRI ORGP FL (80)
as well as
é - ﬁ_(1) + A(Z) + ese +£(8)’ (81)

the following theorem is obtained:

Theorem 1): The vectors g;v)(t), defined in eq.(77), satisfy the s systems

of n differential equations each

[£2]

!
(AN M)zl +F7@®), 7= 142400008 (82)
with

7w =7 ) 7 -q:"’my-':(ty F @) (83)
under use of the above symbolism.
Proof: By differentiation of eqg.(77) and with consideration of eqs.(7.)
and (76), we obtain
zp' = 8 e 1 g7 e
ey 3 (E 4 8)
(87" + 3V A + F 7
It is readily verified that
7 v g a” = 1P (81)
in which case the form of the matrix #'’’ must be taken into consideration.
This will further yield
z:;:’l =0T L E78”
from which, according to eq.(77), the correctness of eq.(82) with the first /45
relation (83) is obtained. The second relation (83) can be perceived as fol-
lows: The zero columns of ¥'¥) are transferred into zero rows of Y(V)r. Conse-

quently, it follows from eq.(53) that

’

o 8
g, 1Tk (85)
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Section ). Discussion of the System of Differential Eguations /1.6
in the Normal Form

Theorem 15: Let the matrix § have a diagonal form and let 21, oee, A, be

the independent solution vectors of eq.(l) with the period P and, finally, let

leq.(72)]

., ¥0 for u=t....o

P P
-
j} {I‘)/{‘z,lr :j‘/‘l'r)Jt = . (86)
o~
) o for - ~+1;..5 9 -

Then, for 1 < b < 0 (partial resonance case)_yc each component of r;u)(t) [see
eq.(79)] for which the corresponding component Eﬁ(t) does not vanish identi-
cally assumes, with increasing t, values of the order of magnitude of t; for
p =0 +*+1, +o., 0 (exceptional subcase)*, all these x;e)(t) are periodic with P;
fort =P + 1, ses, n (partial main case)% exactly one J;P)(t) periodic with P
exists.

Proof: Since ¢(t) is periodic with P (theorem 5), the analogous theorems
need be proved only for the 0" (t). These have only one component w (t) dif-
fering from zero which, according to egs.(52) and (74), satisfies one equation

each of the form

4

Vus= a, Va + E&(t) ( 4=1,2,...,n0) (87)

The general solutilon reads

t «, (t-T}) g(/“t'
£y = | ¢ b (zy £ 8
)“( ) s 50 z 4 c/* fod ( 8)

with an arbitrary constant c¢yo In the case 2 # O (W =0 *+ 1, 4e., 1), accord-
ing to eq.(88) and from the condition

g%(t-+P)= gu(t;

the constant q; can be uniquely defined as

% This case, however, must not necessarily occur.

L ,’4.



- T
c=c’“pfgf‘ b, @dT . (89)

In the case @ = 0, according to eq.(88), we have

[ 4
v/“_(t) =Jl}b‘zn'r+()-"_, M= 132,005 0. (90)

For v =0 + 1, +ee, P, this is periodic with P at any selection of the con-
stants q,. At =1, ..., O, €q.(90) can be written in the following form [see
egs.(86) and (88)]: ¢
oot g irrses e o)
4]
Since the integral is periodic with P, the linear increase of w,(t) with t
follows from eq.(91) and the corresponding statement for g;F)(t) follows from
eq.(79).

This theorem is a special case of the following:

Theorem 16: Let § not necessarily be a diagonal matrix but let it be
given in the ﬁgrﬁ of § = e“P [see eqs.(29) and (27)], with the elementary com-
ponents H = e Y , where the quantities fiy are the elementary components of the
Jordan normal form of the matrix 8 [see eq.(27) with q = P]. If VP 71
(principal subcase), then eq.(74) will have a uniquely defined solution vector
0(yy (t) periodic with P, so that [see eq.(76)] the vector g;v)(t), defined in
eq.(77), has the period P. If e ¥’ =1 and [see eqs.(70), (71), and (72) as

well as theorem 12] P

P
T mfodr -jb (mydt =0
doa {70 (92)
]

(exceptional subcase), then a one-parameter family of solution vectors Uy(t) of
eq.(74), periodic with P, will exist from which a corresponding family of

vectors r'Y? (t) will result. Finally, if the following relation exists in

L5



el aQy?P _
addition to e =1

» /.8

P
j};Jlr),{(r).{z' 'IbCrJ (mrdz = Q‘L,J*o (93)
° [+

(resonance subcase), then each solution vector by(t) of eq.(74) and thus also

each x(v)(t), with unboundedly increasing t, will take values of the order of

my of
magnitude t , provided that my is the order of $y and £ . (A supplement to

this is contained in theorem 17.)

Proof: In the case @y # O (principal subcase), let us successively solve

the system of equations (74), starting with the last equation,

¢ t
« (t-7) «,,
@ = j e’ by TLT tC,, €,
[

t (94)
o (t=T) & '
o= | €7 .(%*,lr)'f-k“(‘f).{r +6, €7 Jorp =31, D~y

The condition w(t + P) = w(t), analogous to eq.(89), will successively yield

c“v? - T

Cry ™ 757 )¢ batmdz,
4]
(95)

?
«, P -~ T
C/b= ‘c“p—_ P fc 14 [y‘_‘*’('z}'fl-}‘(r)]l‘z, e D1=1 500, 0).

Thus, the vector by(t) periodic with P and thus also giy)(t) is uniquely defined

in this case as well®™. If ay = 0, then

P
[o]
% { )“"d 01" [ben 4T (96)
142

o]
a o

* If f(oy) # O, the integrals in eq.(94) with to = sign R(oy) * ® instead of O
as lower limit, will automatically have the period P, as can be readily veri-
fied. In that case, the last summands in eqg.(9,) must be omitted gy = O for

ko= [vI, vl -1, el (V)]
L6



]

[see eq.(86)] is used for decomposing the vector in eq.(7L,) /LS

6 - L, 4 B, (97)
where
4 *
I b, T4z =0 (98)
Let °

. *
loy(t) = ‘oly(t) + Ie(t)s (99)

where, because of theorem 10, it still can be stipulated, for example, that the

first component A v) (t) ofr gy(t) satisfies the condition

?
S g0t =0 (100)
o
Then, eq.(7.) is equivalent to the two systems
7, = R L a, (100)
and , . .
W) =&, 0+ B, (102)

Solution of eq.(102) in a manner analogous to that used for eq.(94), will yield

f X
X x
%) (® gd/. AEVJ todz CEYJ

£
x x X X (103)
%w) .-:0 (/z;‘-‘_*_'(‘.) -rﬁ,“m:))d‘: + 5“ » T 0] -1 500).

The condition ©(t + P) = 0*(t), becauss of the fact that b (7) = B.(T) is valid
for b = [v] = 1, «e., (v), will yield
P P

Because of eq.(98), the first condition is automatically satisfied. Conversely,
the remaining conditions (104 ) successively yield unique values for the constants

¢ vl , CLvl=1l, eses Clyy+1, Whereas c(y) remains completely arbitrary. This /50

means that eq.(102) has a one-parameter family of sclutions by (t) periodic with
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P. If now, in addition to @y = O, also eq.(92) is satisfied (exceptional sub-
case), then Gy of eq.(96) is the null vector and eq.(102) has the zero vector
as the only solution vector periodic with P which satisfies eq.(100). This

means that the above calculated one-parameter family of solutions U?(t), peri-
odic with P and having cfﬁ) as parameter, furnishes the only solutions by(t) =

3*
= py(t) of eq.(74), periodic with P, From this, the quantities r'"’(t), peri-

odic with P, can be calculated according to eq.(77). Conversely, if eq.($3)

coexists with @y = 0, the system (101)

! = L & ! =
1:‘0 3 = B ‘I/,._ 1/«,1»1 ’. M=Dd-15.00,() (105)

is solved in the form of

q‘_(t) = Polynomial of the degree m1 + m2 + oeee + M+ 1 o

=0+ 1~ (e (v), (M) +1,...,03) (106)

1

Q
with the highest coefficient Tg%:ﬁ%%T . Consequently, specifically q(vy(t)

will be a polynomial of the degree my. Since, because of eq.(98), the terms

3t {V]1=C 3
vg(t) in eq.(103) increase at most like t , meaning that va)(t) at most

will increase like £mv-l, each sclution by(t), with increasing t, will take
values of the order of tmé in accordance with eq.(99). The same statement then
also applies to the vectors g;V)(t) to be calculated from eq.(77) since, accord-
ing to eq.(30), 5\V)(t) cannot be the null vector.

Without further proof, these same considerations show directly:

Lemma: The components vy (t) (0 = (v), (v) +1, «o., [Vv]), in the resonance
subcase, take values of the order of t[V]+1-G with increasing t. The same
statement applies to the vectorial component summands Eg(t)vb(t), occurring

in g;v)(t) in accordance with eq.(77), for each scalar component for which the

corresponding component of Eé(t) differs from zero (see theorem (17). /51

18




Theorem 17: In the resonance subcase, each component x_(,\gvg(t) (c =1, 2,
ese, n) of 13”0 (t) from eq.(77) takes arbitrarily large values with increasing t,
unless, for example for 0 = p, the components <P0,u(l-" = (v), (V) *+1, ece, [V])
of the p'D row vector of ¢ [see eq.(33)] all vanish; in this case, we have
xfx.v;(t) = 0. More accurately, it can be stated: If we do not have XS\:) (¢)=0
(see above), then xfx_v) (t) (p =1, 2, eee, n), with increasing t, will take
values of the order of gt provided that in the oth row of V) [see eq.(73)1,
the quantity Pog vy +) is the first component differing from zero.

Proof: According to eq.(77), (99), and (106), we can write

- o) (>
r = 7w ( 2% + w* "”(t)) ,

if q(v)(t) or b_x( v{t) represent the n-component vectors supplemented by zeros
from q,(t) and b:’-(t). Rather than by eq.(100), the resolution of eq.(99) is now
restricted by the stipulation that pby(t) is to be periodic with P and normed.

In addition, we have Py o M o g, _
- TNy ST, (107)

-~ =0

[see eq.(33)]. In this case, E(v) (), oee, 5[ y1 (t) are linearly independent
vectors with the period P whilé q;(t), according to eq.(106), is a polynomial
in t of the degree [note: o = (v) + AJ:

[v3+ 1 —e=n-A. (108)

Thus, the pth component of eq.(107), taking eq.(105) into consideration, will

/52

become Y oo
*
x;':: (%) =ﬁ§‘;,7r GO IRV i (%) +«.Z:‘,7r-*(t) S 9, (0. (109)

Since the first sum in eq.(109) is periodic with P, it will remain finite for

all t. If Pag v)+) is the first nonvanishing coefficient in the second sum,
s

LINC DY
then xf)ﬂ\;) (t) will take values of the order of magnitude t v with increasing te.

We still note the following (slightly weaker) alternative:
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Alternative: Either x;;)(t) assumes arbitrarily large values with increas—

ing t or else x;g)(t) = 0 is valid.
Note: If, corresponding to eg.(73),
Y =719y Y (110)
is defined, then from the vanishing of all elements of the Dth row of @(v)’ be-

cause of eqs.{(30) or (33), the same statement follows for oY) and vice versa.

Section 5. Examples /53

Example 1: (Re theorem 15, resonance case and exceptional case, and theo-

rem 8).

Let us consider the system of differential equations

x} = - x, sint + x5 cost + £,(t) (111)

{ x," = x, cosSt + X, sint + i‘ﬂ(t)
under the following two assumptions:

£,(¢) = eSI ¥ oog (1 - cost) (111a)

fz(t) - - 318 455 (1 - cost)

and
£,(t) = 2e® ¥ sin ¢ sin (1 - cos t)
f5(8) = - 2512t gin ¢ cos (1 -cost):- (lllb)
In eqg.(111), we have
ﬁl cos t sin t
(t) = - «=costZ+ sint ) 3%
- sint cost (2-1)

with

5 . L_#_A_q. (112)
-1 o

# The numerals in front of the period refer to numbers in the main text while
the numerals behind the period designate the number of the example involved.
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)/

On the basis of this latter presentation (2.1) the validity of eq.(4L9) can be
directly verified. Therefore, at P = 27, the quantity 8" from eq.(35) will /54

be the zero matrix, i.e.,

-7 (36.1)

and

¢ (&) = Ww) (30.1)

as well as

PEORTZ{OP (31.1)
In addition, eq.(37) must be used as the solution matrix of eq.(3), because of

eq.(49) (see theorem 6)., Taking eq.(2.1) into consideration, this will yield

t
I‘MT  pont STt (-8)T

lg(t)-e =€ . €

= C““t. { E’+(1_“‘t)j_ ﬁ_;:,”z{_(’_:"t)l 7+]
= e“-t. _{ [M(""Q"t} { f a;u(1_g't)fj

(cos(‘l - cost) l sin(1 -~ cost))

sin t
e o
- sin(1 - cos t ) { cos(1 -~ cost ) |o l eSint

(37.1)

Therefore, it follows that’
) cos(1 - cos t) Jsin(’\ - cost) e—sinty
t) = S - i )
3( - sin(1 - cost )‘lcos('l - cost ) lo gtint (12.1)

A1l solutions of eq.(l;) thus will have the period P = 2m.

In the ¢ase (11la), the resonance case is present since it is calculated

that
ar r
fj:-fr),{m(z = j1~-l': =om (resonance subcase)
b or (86.1a)
f j"(z)4(z)lr= !04{7: o (exceptional subcase)

# By substituting egs.(37.1) and (12.1) into eq.(10), it is possible to confirm
eq.(36.1) as control.
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Taking egs.(53), (75), (76), and (31.1) into consideration, we obtain /55
t ¢
U;,(t) =_[67(T)JT ’.[ J,'(‘r)/{{r) dT » (7[;-1)
and thus, under consideration of eq.(30.1),

27 -y w e = gwm [j:cn AcoodT 1—c,,] . (79.1)

Calculating out, eq.(37.1) in view of eq.(86.1a) will yield

. cos(1 - t) .
t"(t)x( cos )es:_nt (t +cq)’

sin(1 ~ cost )

w 8in(1 - cost ) . (113)
€ ®) =(cos(‘l - cost)eSlnt ca -

In accordance with theorem 15, each component of g(l) (t), with increasing t,
will again and again take values of the order of t, while ¥ ¢®) (1), as a vector

periodic with 2m, will remain restricted. The general solution of eq.(111)

then becomes :
Z () =2 M) ) . (78.1)

In the case (111b), the exceptional case exists because of

1

/]

¥ %
fj,'('z)/‘ffr)lzz 2]sin’t‘ sin(2—2cos:’)d2’=—eos(2—2cosr), =0,
°
p * 27 o (86.1b)
Jj’;’z)/-f('z)l2'=—2/sin’l’cos(2—2cos'r)d'f=-sin(2-2005'r), =0.
2

[

cos(1 - cost )

Analogous to eq.(113), calculation yields
)eSint [’l-cos(2-2 cos t)+°’l]

(Z(”(") .
I - s5in(1 - cost )

sin(1 - cost ) )
25:.) (t) = 518 t [— sin(2-2-cos t)+c2}.

\ cos(1 - cost )

(114)

The general solution of eq.(111), composed in accordance with eq.(78.1), thus
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has the period 2m.
Example 2. (Re theorem 15, principal case, and theorem 8). /56

The system .
x," = (1 + cos 't:)x,l + (2 + sint )x2 + esn“ntcos ((’I+2t)—cost)

xh = —(2+sintx, + (1 + cost)x, -~ eSin g5y ((‘l+2t) - cost) (115)

possesses the matrix

(Lo (1:_“52

2 int
“+_ sin ) =(1+cos t) {+(2+ein t')j (2.2)

with § from eg.(112) and satisfies the condition (49). As in the above example,

we find 06’** -¢+27, (35.2)

so that -
a r - eZT({*Zﬂ. e2r‘f. eLLTj = 82 {9' (3602)

since derivation is made by the method of power series which consists in expand-

ing the exponential function
eu'r_'f -
Consequently, in the diagonal matrix $, we have [see eq.(16)]

27T
e

X =2, = .

1

Thus, the principal case is involved here. In addition, we calculate

19“) - el? * sin OE, e(1+ 2t - cost yF

( cos(1+2t—cos t) I sin(1+2t-cost)) (et + sint1° > (37'2)

- 8in(1+2t-cost) -l cos(1+2t-cost) Lt«sln

[o}

from which, by means of eq.(10), we again obtain eq.(36.2). Analogous to /57

eq.(113), we find

- sin(1+2t-cost)

- sin(1+2t-cos B t + sint
z (t) = ( e “Cp .

‘Cm(t) . cos(1+2t-cos t)) K sint.(_;t+,‘+c1)'
(116)

cos(1+2t-cost)
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With c¢1 = -1, the quantity g(l) (t) becomes periodic with 27 while at cz = O the
vector r(z)(t)and thus also the total vector (78) becomes trivially periodic.
Example 3. (Re theorem 16, resonance and exceptional case, and theorem 8).

Consider the system of differential eguations

x) = - x8int + x, [1 +(sint+ cos t)eSint ’COSt]+f1(t)

(117)
x} = = X,8int + f2(t)
with
£,(8) = eSint ~ 1
fz(t) - ec:ist -1 (ll?a)
and, respectively, £,(t) = 081
fz(t) = 0. (ll?b)
The coefficient matrix becomes
sintl 1 + (sint + cost) esint- cos t
fLeo>- e - (118)
o , - sint

= .- sint f+l’l+(sint + cost )es:mt = cos t]'{, ,

4 (z ;) (119)

Here, %(t) satisfies the assumption (49). We can then calculate directly

P I (° 1), (35.3)

if we define

o] 0,

so that, because of'@B = 0,

t.2"Y tony. (“ 27. (36.3)

Consequently, § is an elementary component of the rank m = 2, with the eigen-

value A = 1., Further, we obtain

oh



e

1o - oCome AT )G
y (37.3)
- eC0st- Tp. [f . (esint - cost_g=1 t)@

- ecost -1 _{ +[esint - 1+ t €08 t -’l_ecost-Z g

£C0S t ~1 ' es:mt -1_ ecost; -2+ tecos'l: -1

° ’ ecosi: -1

- gb(t)!”"

eCOSt = 1 | eSint- 1 _ cost-2
é(t) =1 ) (120)

° | eCOSt—"

with

where egs.(30), (35.3), and (36.3) have been taken into consideration. By means

/59

of () = Q) 10w (51.3)
the following system of equations is obtained:
£ 0. B(n) (52.3)
with [see eq.(32)]
#(t) = é" () A& w> - (53.3)
In the case of eq.(117a) and in accordance with egs.(120) and (117a), we
have ‘6—(1;) -cos t +1 i’__esint: - 2 cost +L e-cos? esint;- 1)_
° ’ e-cost+ 1 ecos t--‘y (53.33)
-
- N
Because of
r
f b(zo>ds =273 (92.3a)
[ 4

the resonance case is present.

From eq.(52.3) [see also eq.(35.3)], we then obtain

-1

' = + e

V,I—Ve
vé=1 ,V2-t+C2s
3

-1
§+c2t+e t+c,|,

55
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so that, according to eg.(51.3),

2
cost -1t -1 si - -
(Z+e,t+e” 't + c,) +(e int -1_.cost 2)(**5))

) 121
cost =1 t + c2) ( a')

In accordance with theorem 16, r (t) takes values of the order of magnitude t?‘;

in accordance with the lemma of theorem 16, v;(t) and thus also x(t) again /60
and again are of the order of magnitude t°, while w2 (t) and x2(t) are of the

order of magnitude t.

Analogously, in the case of eq.(117b), we obtain
1
LAQRIE (53.3b)

2%
f l".(’Z)lT =0 (9203b)
o
so that the exceptional case is involved here. From eq.(52.3) we obtain
v,'l -V, 4 1
vé =0 , Vy = Ch,

v1-(1+cz)t+c1,

and thus also, in accordance with egs.(51.3) and (120),

[teCOSt —1, 8int -1_ cost -2]02 + 008 t-1(c1+t) .

ecost -1

£(t)- (121b)

2
Obviously,
r(t + 2m) = r(t) is valid for ¢ = -1

Fxample L. [Re theorem 15, resonance and exceptional case, at general

w(t)I.

Consider the system

/61
{ x3 = (1 + sin 9 Xy + sint x; + £,(8)

xé = 8int x, + fz(t) (122)
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with

1 1 - cost
f(6) =~-5e (sint + cos t)
(122a)
f2(t) - °1 - cost
and, respectively,
f,\(t) - 31 - cost
£5(t) = o . (122b)
The coefficient matrix
. DU”" 1 + sint ] sint (123)

] ] sint

t
is not commutative either with %(7) or with.J‘u(T)dT, as can be readily checked
by calculation. From the second equation of the system (3) we find, together

with eq.(123)
? ,Z(t) -, e‘\ - cost .

and thus from the first equation of the system (3),
J1(t) -et - COSt(c,, + czfsin'te "~ d‘;") -

- -~ 1
et e’l - cost t 1 cost(_e t cost2+sint . 9’

C,‘ + 028 e

so that we can select

19 wel - cost(et ] - ,:, (sint + costj. (7.{4’)
o ‘ 4

Hence /62

z - 1.?"1(0).12 (e = . . (10.4)

The matrix § is partitioned into the two elementary components §; with the

m
eigenvalue Ay = e and $= with Az

1.

Further, we calculate
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et o

T
-1 cost~ 1
93-19 = e

%e-t (sint + cost 1

In the case of eq.(122a), because of

1)
J j"(n.:)/{cni'z = 27
0

the resonance subcase is present for $> and the principal case for $;.

use the method of variation of the constants®™ for further calculation.

argument «
T (8) = 25(8) +25(8)
we then have )
*x 1 - cos t et
t1(t) =e €01
o
1, .
-5 ( t t
They - o1 moost [TZ(SERET OO .

1

(12.4)

(86.42a)

We then

In the

(9.4)
/63

(121,)

The quantity gf(t) again and again assumes values of the order of magnitude t

.x.
while r1(t), on selection of c1 = O, is periodic with 2m.

In the case of eg.(122b), because of

Fas

-
f }x (o) fcmd T =o

(86.4b)

% On substituting eq.(9), under consideration of eq.(8), into eq.(1l), we will

have

7= I'Qlff 19:':0131»/{:01‘9[14;
i.e., according to eg.(12)
' = 19_‘14 = t?-r/# »

¢ T
) = f ??{z)/{(’r)t{f + 'fa .

this will yield

For the summands of eq.(9) in view of eq.(8), this furnishes
¢

2’:'(:)- 9, ”)(/ J'T(T) Aiond Tt C,,,) .

[4
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the exceptional subcase exists for Ry and the principal case for $. As above,

eq.(9.4) is obtained with

* 1 - cost et -t
Z'.,I(t) = e .(-—e +c01)

o]

1 .
% -2(51nt + cost)
tz(t) - eﬁ - cost( '002 .

1

(125)

Here, x?(t), for any cp2, has the period 27 while ri(t) has this only for coq = O
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PART 1V /67

THE RESONANCE CASE IN LINEAR ORDINARY DIFFERENTIAL
BQUATIONS OF THE nth ORDER

Section 1. General Considerations

In an earlier paper (Bibl.l), we investigated the resonance case in systems
of n linear ordinary differential equations of the first order with pericdic
coefficients. Here, this theory will be applied to linear ordinary differential
equations of the nth order with periodic coefficients. Consequently, let the

differential equation
L) = x(n) + 81(t)x(n_’1)+... + an(t)x - £(t), (l)

be given in which, for all coefficient functions and for the function £(t),
reality, continuity, and periodicity with the period P are assumed:
ap(t + P) = au(t) (A= 1,...,0), £(t + P) = £(5). (2)

Using the notations
1% = X, 2x=x',,..,nx=x(n—1) (3)

the differential equation (1) is transformed into the system

z ' = (L) + ) (1)
with
X 0 1 0 [ [
ry .
= ‘ )a(t)= ’ : 'I(“= (5)
-] 0 ° 1 [
{(=—1)
x Sa W,k (0o ) fo

To the homogeneous differential equation conjugate to eq.(l)
Ly} = y(n) + aq(t)y(n-1)+...+ a (£)y = o (6)
the following system of differential equations will then correspond

¢ = DL % (7)
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with
¥
ye [ ¥
:J'("')
{
The homogeneous differential equation, adjoint to eq.(6),

T f2ds (07 2a(-)™ N (9)2) DLl va (8)2m0

when using the notations

nz-z

[ ‘
- +a a -
n-1% * ~ n% 49nZ "8 22

n-2% = - n_,]z' +8y 2 =8, 2 - (a1z)' + 2z "

J n-3% = - n_22' +az pZ = a3z - (azz)' + (a,lz)"-z"'

: ' ! » n_(n-1)
Z ==, % 0, wETe l-(-_t 2) f(g‘_.,z) ;-uf(-i) 2

-

= - ] _—
o = 42 +annz_L[zJ

will be transformed into the system of differential equations

AR AOF!
with
2
2z
i :
nd

In another paper [Bibl.2, eq.(17)], the following was demonstrated:

If »(t) is a fundamental solution matrix of eq.(7), then

gm =(l?-1(t))1— =(;1, For oo h)

is a fundamental solution matrix of eq.(1l). According to another paper

/168

(8)

(9)

(10)

(11)

(12)

(13)

169

[(Bibl.1l), eq.(30)], a fundamental solution matrix 9(t) of the following form”

% For abbreviation, we will later write 19,(t) = @ (t) and analogously in the

first component of other vectors.
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d.m
fa ®©

RE — — -

'Lgm-ém.e ’ §(¢>=(«f1m,..., “fu"’)"i-”) = ,;é#(t) (lll-)
exists, having a matrix 2(t) periodic with P and a constant matrix & which
latter is written in the Jordan normal form [see (Bibl.l), egs.(27), (28), (29)],
from which, for the fundamental solution matrix (13), the following presentation

is obtained [see (Bibl.l) egs.(31) and (32)]1:

-1 \T -A7 -k . I —1 |T
?{h=(§ m) . e r: L/_m._e with L—f—=ér,"-v*r..)‘(§ m) (15)

We will treat the general case [see (Bibl.l) eg.(27)] that the matrix 8 is
partitioned into s elementary components

<y
A’vs '_.. » =192, -5 A
( = g (16)

oAy

with the orders my, in which case the following is assumed to be valid

-0 forv= 1,004, ¢
"{ (17)

$ 0 For Y =8+ 1,00.48
(p = O0Oand p = s is admitted).
For the general solution x(t) of eg.(l), using the method of variation of

the constants [see (Bibl.l), eg.(9)] and the footnote on p.58, we obtain

/70
b
x(8) = J o gu(t) - fz,. (t) £(t) at (18)
[see egs.(5), (10), and (13)] which can be resolved, in the form of*
x(6) = S 7 x(s) (19)
vaq
into the components
Yx(t) = B gt - } (5) (%) at
B—=F i (20)

* We changed the symbol x'¥’ into "x from that used in our first paper (Bibl.l)
so as to prevent confusion with the derivatives.
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with the summation indices [see (Bibl.l), egs.(66) and (70)]:

(9)-n1+-2+...+n'_1+1,

(21)
2] =E, +Ey 4 oe.. + B,

For the components vx(t) withv =p +1, ..., s, we can assume that they

are functions periodic with P. These are uniquely determined [see (Bibl.1)

theorem 16].

In the case Vv = 1, 2, +e0, P, the following is obtained in accordance with

our- first paper [(Bibl.l) egs.(109) and (106)]:

"—
v,
Y x(t) = fi (m=Ar T 0 ® , (22)
where Y@, (t) has the form
~
@i(t) -‘zg;'c Fevraw )  for M= 0y150004m, =1, (23)

~1
= ? i w) w )
- m (c v, o ) o +y (21)

The v, (t) defined elsewhere [(Bibl.1l) eq.(99)] are of no importance here. /Il

(V)+Y

It is further found that the constants vc\(u’ aside from depending on v, depend

only on the difference W - Y; thus, using

’c',-,d,.-y (25)
eq.(23) can be replaced by
i) "'%: v",;-x Toysy™ for p= 0,1,0.0,m = 15 (26)
with the procedure being the same for eq.(24). The quantities "du_Y with b -
- Y > 0 are arbitrary integration constants, whereas
a,m o = 28ra (M= 0s1yeeim, = 1) (27)

with [see (Bibl.1l), egs.(86), (92), (93) and note niyy (t) = zry; (t) according

to €Qe 10 ]
a = |JIIJ‘Z,/{(T)JT II‘[J(T)F('&"JT. (28)
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In the resonance subcase (V =1, ..., 0) the quantity "x(t) will always be a
polynomial of the degree my with the coefficients v@h(t) which is periodic
with P, while the coefficient '3 (t) of the highest power is obtained from
egs.(14), (26), and (27) as

o) =B, T, () (Y e, (29)
which means that it is an eigenfunction of the homogeneous differential equa-
tion (6) periodic with P. If, in the exceptional subcase, vdBv with the small-
est By > 0 is the first nonvanishing coefficient (25), we will obtain in an

analogous manner, provided that By < my,

[12
O.m =0 for 0 LA LPSE | vEravS,
of
(30)
"6” ) = ’Jﬁy J(\g) © '6" <y
In what follows, eq.(22), omitting the highest t-powers with vanishing coeffi-
cients, will be written in the following form:
“ e, B o, am fOr Y= 1,,..,
GOy LR J
’T.'(v/")- %P, for V= o+ Treeesd - (31)

A solution (19) of eq.(l) which is represented in the form (31) for v =1,
eee, P and which is periodic with P for v =p *+ 1, ..., 5, will be denoted here

as the "mormal solution”. Such a normal solution can be written in the form of

) w-J
. ¢
x(t) J.Zo 5(;“"(.,-:“ (32)
where
w = )’" (“v :o) (33)
(Y-"-"')f)

is used and where the Yg(t) are composed of the vq_,,(t) in egs.(26) and (2,), to

yield functions periodic with P.
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It should be emphasized again that, in eq.(32), only one special solution
of the principal subcases is used, namely, the solution periodic with P, whereas
in the resonance and exceptional subcases the complete solution is used with my
arbitrary integration constants. 13

In view of egs.(29) and (30), the following theorem can be confirmed:

Theorem 1: If, in eq.(33), w > 0, then the factor ¥5(t) of the highest
power £” occurring in eq.(32) will be a nonidentically vanishing solution of the
homogeneous differential equation (6), periodic with P.

It is directly obvious:

Theorem 2: If the resonance subcase is valid for v =1, ..., 0 > O, the
order of the powers of x(t) in eq.(32) will be at least

vz ({tfr..,., % ° (y/:::.,.—) T (31;,)
and at least one solution x(t) will exist for which

w = /"J’

(PPN
(VE - y) >

This latter statement follows directly from a consideration of egs.(26), (27),

and (31).

A successive differentiation of eg.(32) to t yields

w (r-1) (k-2)

0 N k i
p m:Z(X; f{')j(,w f{t)s(;-z f""}/?;-k) %.:—:)_' ’ (35)

Jso

K = 1,2500ey(n = 1),

where the formally written functions Yéa)(t) with B < O must be replaced by

zero. From this, the following is directly obtained:
Theorem 3: If Yo(t) in eq.(32) is not constant, all derivatives x*¥’ (t) of
eq.(32), with k =1, «ss, n = 1, have the same sequence of power increment tw

as x(t) itself, If, conversely, Yo, Y1, ee., ¥{-1 are constant whereas ¥y (t) is
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not constant, the power orders of the derivatives of x(t) decrease successively

by 1 down to kﬁL)(t) and, from then on, remain constant equal to w - 4,

Section 2. The Case az(t) ¥ O yain

Considering that, in the case of
a (t) g o (36)
the homogeneous differential equation (6) in eq;(l) cannot have constant solu-
tions, it follows directly from theorems 1 and 3:
Theorem }: Under the condition (36), all derivatives x'*’(t) (x = 0, 1,
+eey N =~ 1) of a normal solution (32) of eg.(l) always have the same power order.
Note: The only exceptional case of theorem ) can possibly be the case of

x(t) = Const. = C § o (37)

which occurs for
£(t) = Ca_(t) (38)

1]

since, in that case, x(L)(t) O for £ 2 1, It is worthwhile to group this
trivial but interesting special case with the general considerations.
Primarily, the resonance subcase must not occur here since then terms with

t-powers would necessarily enter in eq.(32). Consequently, the assumption of a

solution 3q(t) of eq.(1l), periodic with P, for which [see egs.(28) and (38)]
2 d

f 2400 agtmidr = @, $O (39)

[

is valid, must be continued up to contradiction. This contradiction is obtained
directly from the first and last equations of the system (10), in view of
eq.(39), since 1za(t), and thus also 3q(t), does not have the period P [ see
eq.(12)].

Consequently, for v = 1, ..., P the exceptional case exists while for v =

=p +1, +ee, s the principal case is present; here p = O and p = s is admis- /75
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sible.

First, let us calculate the vector

‘ [£2] ©

“; )=
oy ®

for the special case involved here.

According to another paper [(Bibl.l),

(40)

eqs.(85) and (31)] and to the notations in that same paper and in eq.(76) (see

footnote on p.32), we obtain

o
Rt Tt At | wf
' 3 z.;,,r

)

L)
T
,:5'!!)- ‘5‘,1!7 :y?_’l_ A=e
[J

o

Consequently, taking eq.(38) as well as the first and last equations of the

system (10) into consideration, we have

co0 ) r -1
12 L -’—:’—‘
('-")
. S R
‘6;, () = [ e 4 . with & =& - (”‘v—l"
) :
1393 Lt
-4
- J A J

in accordance with eq.(16).
We then define the row vectors
5’»« T'(#m . "’#rvj) ad 13,78 (leu - . -azch)'
According to eq.(15),
A (éit.g,"?jb y

V- v
27L ) = i;rn e = ;

so that the following is valid for the corresponding column vectors:

Lt

}7, = (I, )T = e g,
Equation (74) (Bibl.l), namely,
K = Ay, A, ®
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(13)
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as readily verified by egs.(44) and (41), has the solution

10, 1t) = (',’f;”’” Y= 1,2,0..,8.

(16)

periodic with P. Thus, eq.(32) according to [(Bibl.l), eqgs.(79) and (77)] can

be written in the following form:

A m=~1
x(8) = € 2,05 Gy Hoopy " CZ e =C, (47)
v= zo
where, in the last transformation, 8%’ = G was used in accordance with eq.(15).

Section 3. The Differential Egquation Reduced in Order

Since the case (36) in the previous Section was taken care of, we can
assume below that™
ait) =a () = ... 2 8_g4+1(E) = o, an_5(t) 4 o,
1¢3¢n =13
Using ) = xey , ) - 73 ey,
egs.(1) and (6), respectively, are transformed into
T 512 294 a c0) £ s e ((0)F = (0,
LLF = 57 a0 L L e (07 - o
The pertaining adjoint homogeneous equation will then be

: . -§-1
- nd -3 a-3-1 n-3 A
AEYELSL 2 e ,_1,,,5,‘ $oo0t Ry j (82 =0

Each solution of eq.(52) simultaneously is a solution of eq.(9).

Conversion of the differential equations (50), (51), and (52) into the

171

(18)

(19)

(50)
(51)

(52)

corresponding differential equation systems of the first order, together with

the reduced equation [see eq.(49) and (50)] % = <
case or the exceptlonal case is present depending on whether the mean value

“%‘ f £(T)dT is not equal or is equal to zero.
[o]
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will yield

and

with the matrix

=

which is correlated with the matrix %(t) as follows [see (Bibl.1), eq.(23)]:

(91.

B

Now let

(t)

~

i %
i s
- . - .
!’ = : 3 3 = N
A tng-1) .i
n-J

A
o

-

0

=

(i
Ji»

4

A

0w

A
)

(a-+)

(n-D

70

-‘5'. 0w
-? &7
§ .- /4 @ §
° ]
] -]
SCTLLFEL NP PR

[

J

-8 (2 -
2 ‘()) .‘,'”)

74

]

~

fLw

178

(53)

(54)
(55)

(56)

(57)

(58)

178

(59)



be a fundamental solution matrix of the reduced homogeneous differential equa-

tion (51) so that, for §(t), the following representation [see egs.(ls) and

A A

N AP
= Prire (60)

r=

(19)] applies:

A

~ - Fy ~
i = Go> a&étz_ M ow =
v=1
with the fundamental subsystems:

h]

L)

LM
<

8 A

>

3, T ‘;EVJ
v Ul
) = 0 . 0' =

ﬁ’ ~fng-0 A Ma-3-1) (61)

[ c. - vl

- (#) @)

:}v) . J'["O

n~1) (n—-1)
J’(v) :’t’J
-
and the periodic submatrices:
F 3
1:"(‘4) ° h N 1‘?5»’]
(62)
v$ t4) = 0 0
wifor o ~ifoa
. J
Again, let us assume [see eq.(17)] that
- 0 for v= 1,---9?7

« { (63)

ol
40 £AT 7= £+ Tyeeeyas

where, as always in special cases, P can be equal to zero or 8. In that case,
the matrix (t) can be expanded in the following manner to a fundamental solu-

tion matrix 01(t) of eq.(6) [see eq.{58)]:
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r FR 7
¢ - ¢ .
=1 L s
¢ .&m a;»
1“_'_~W%j (64)
IQ(lls (7'0'": 7,): J'd', B J:; =
'(--1) ‘{..-')

Jf XY |

- J

Here, the square matrix Q*(t) is successively constructed by integrating the
first row of the matrix ﬁ(t) in which case the integration constants can be

arbitrarily selected.

Next, we partition the matrix gﬁ(t), analogous to eqg.(6l), in the form of

. /81
1_9*(‘;) =i "19 * (65)
7
into the square submatrices Yoyt

Then, we can formulate the following theorem.

Theorem 5: If the reduced differential equation (51) has exactly 8 inde-
pendent solutions F(1), §(g), ~%e s ykﬁ? periodic with P, then the differential
equation (6) either will have also exactly ¢ independent solutions, periodic
with P, or else eq.(6) will have exactly p *+ 1 independent solutions periodic

with P. In this case, the following is valid [see the notations of eq.(21)]:

1) If, for all §,,(t) (v =1, ..., B),

P
f §(y)(t)dt = o, (66)
]

applies, then eq.(6) will have exactly # + 1 independent solutions periodic

with P.
2) If, conversely, for at least one J,,(t) (Vv =1, ..., p), the following mean

value
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?
P J Yeas = 8, g o, (67)

applies, then eg.(6) will have exactly P independent solutions periodic with P.
For a proof, the following simple guxiliary theorem is required:

Auxiliary theorem: Let g(t) be a function periodic with P, for which

P
j g(t)dt = o (68)

is valid. Then, exactly one function h(t) = f g(t)dt periodic with P will exist,

for which ’,
{ n(t)at = o (69)
o
is also valid.
Proof: For each constant h(o), /82

[ 4
n(t) = j g(z) dt + h(o)

is periodic with P. For a uniquely defined constant h(o), eq.(69) will then
applye.

Application of the auxiliary theorem for proving the theorem 5 proceeds as
follows:

1) Let ?i(,)(t)dt = o (for»=1,...,7) [see eq.(66)].
[}

By j integrations of the functions §(v)(t) (v =1, ese, 0), in which case the
integration constants must be determined each time in accordance with the auxil-
iary theorem, exactly one function y(v)(t) having a mean value of zero and being
periodic with P will be obtained for each ﬁ(v)(t). Accordingly, based on the
trivial solution $,(t) = O, the function yo(t) = 1 will be obtained as a further
solution of eq.(6é) periodic with P. That this solution is independent of the
above-defined solutions y(v)(t) (v =1, 2, eee, p) follows from the fact that
all these y(,,(t) have the mean value O, while y(t) has the mean value 1. That,
in addition, the y ,,(t) (v =1, ..., f) are also mutually and linearly inde-
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pendent follows from the linear independence of the functions ﬁ(v)(t) after j
differentiations.

2) Conversely, if not all $vy (v = 1, «es, P) have a mean value of zero, new
solutions can be obtained by linear combination which, again, will be denoted
by F(1)s eees §(5,s that can be so defined that, for example, J(1) has the mean

value 1 while the remaining ycv)(v = 2, +e., P) have the mean values O, i.e.,

?
% j Jmmlt =1

o n
j"’ Jomdt =0 (= -0of) - (70)

By j integrations of the functions Fyy (v = 2, ee., 8) and in accordance with /83
the auxiliary theorem, again § - 1 solutions y(vy)(t) of eq.(6), periodic with P
and having a mean value of zero, will be obtained which are mutually and linear~
ly independent. An integration of § 1, (t) would yield a solution y(1)(t) not
periodic with P. However, the trivial solution $(t) = O again leads to the
solution y(t) = 1 periodic with P which, together with the functions y(2y(t),
eees, Yi)(t), forus a system of 8 linearly independent solutions of eq.(6),
periodic with P.

Finally, it is easy to demonstrate that eg.(6) can have no further solu-
tion periodic with P. Let y(t) be any nonconstant solution of eq.(6) periodic
with P; then, $(t) = %92 (t) will be a solution of the reduced differential
equation (51) periodic with P which, in addition, has a mean value of O because
of the differentiation process; consequently, y(J)(t) must be linearly com-

posable of the already known solutions ﬁ(v)(t) (v =1, eee, 0).

It should also be mentioned that the solution vectors 3(t) of eq.(56) must

be completed into the solution vectors z(t) of eq.(1l) by a successive differ—

7h



entiation process in accordance with eq.(10), toward components with smaller

indices.

Section 4. Definition of a Special Normal Form of the Fundamental /84
System of the Reduced Homogeneous leferentlal Equation

Unfortunately, for solving the reduced system of differential equations
(54), it is not sufficient to merely bring the matrix:ﬁ, introduced in accord-
ance with eq.(14), to the Jordan normal form, in view of the fact that the main
purpose of the theoretical consideration is a discussion of the system (4). For
this, it is necessary to obtain the square matrix 97(t) occurring in eq.(64) in
as concise and simple a form as possible. For this purpose, the fundamental
system (59) of solutions of the reduced partial equation (51) is brought to a
special normal form, which we will characterize by the following properties of
the matrices (62) occurring in eq.(60):

Definition:

1) At Ay = O, either the following mean values are valid for b = (v), ..., [V]
?

2 | Fu(t)at = o for all u (7)
o
or an index O < iy s @y ~ 1 (@y = [v] - (v) *+ 1) exists, so that the following

is valid for the mean value:

¥ 4
~
% f \fw)f‘_ ) di =7

(72)

L

P
o] f)+k ) dt z 0 for kvf‘ly

2) The elementary components are so arranged that, for v =1, ..., A, sub-
scripts iy exist whereas, for v = A + 1, ..., §, all mean values (71) are equal
to zero. Forv =9 +1, ..., §, we have oy = 0; here, the elementary components

are not restricted.
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3) The orders fiy increase monotonically for Vv = 1, ..., A:

B> B_qs ?= Theeesds (73)
50 that the inequalities /85
1,01, 4 5 B,- 1,08, 4 -1, _, for 7= 2,...,2, (71)

are valid. The elementary components for which all mean values vanish are also

arranged in accordance with increasing values of fiy except that, in this case,

A A
only By, g, 7oA+ 2,00 fe

(75)

applies.

For constructing this special normal form, we will need several new con-

cepts and theorems.

Let [see eq.(1L) and the notation (42)], under the assumption of oy = O,

1 ¢ tﬂ"—l
_ : (3.,,-1).‘
a '__ A A -~ -~ - :
-:9, =lde -,J[yj) = gf(w’ T "‘fL-,,J) r =
~ (76)

-~ -2

“ ~ “ 9 A A
fd k’fw >t ch) + L((,)“—1’ Y 3 ‘fﬂ"’? ?[VJ

a1
v

be a fundamental subsystem belonging to the vth elementary component. Either

all mean values are

?
Mp- g f F.(t)dt = o fors= (¥),...,0d, (77)
or cne iy exists, so that
= o fer g L by s
Mf" ¢ o for AN, 53 084, ¢ T (78)

L arbitrarily for AT T L

Then, the following applies:

Theorem 6: A regular matrix



4 -~ L8é

Cor  Comar " c[,c]
N - . -1
A A -~
Vel . =Cn (.'fc‘”""ZT TCVJ{ (79)
Connr
Cn
.

is in existence [see the denotation (58)], so that the transformed fundamental
A T
system ;hy Y6 has the property 1.

Proof: Since the matrix v(s is commutative with the matrix

1 & - . - 2 i
A~ h ) (“t'.—“)!
A S
- -
Lot (80)
1 ~
-~ AR 4/_1 g w
=L+t Z+E S + pi 4
2 =,-0

v
it is immaterial, because of eq.(1), whether the transformation € is applied

to the f{ru or directly to the t’(\h. The row vector

~ T A ~
IR C AR %) (81)

b = L, - :[- : (82)
If, for each subscript w, the components
fi/" w = :f/;- (3] + M/‘ (83)
are separated into the constant mean value M, [see eq.(78)] and into the func-

tion ?Eu(t) of a mean value zero, the following applies in a readily understand-

able notation:

e x
1Yv - 4"1

. 2\_ + m:- ‘-7\- . (811-)
T
The row vector iy is then to be transformed by the last summand in eq.(82) into

the row vector sm%' , which is defined by /87
77



. . (85)

n",*‘:v =1 , m/‘ = e for e gonti,

This[see eq.(79)] leads to the system of equations:

0 =c(y) My

o =°C) l‘(w)m * C(»)+1 ll(>’)

0 = C(,) ll(,,) Lo e P C()ai -1 ll(,,)
) fid (86)

1 = C(y) n(y)‘*if + eee + c(#)+i,, u(’)

° = S(y) M(w)+i>,+'1 *oeee # c(v)+iv+1 l‘(,i)

[} -c(y) M(y) + eee +c(i)u(y)

The first iy equations are automatically satisfied becausé of eq.(78). The re-
maining equations successively lead to solutions: c(v), C(v)+1,y eeey Crvi=iy,
in which case we definitely will have c¢(y) # O. This means that ‘s is regular.
[In the case that, instead of eq.(62), all M, =0 (see eq.(77)) one can simply
pose'v@ =Gy.]
From now on we can assume that the fundamental subsystems (ﬁ(v), coey
$cvy ), for all v, have at least the first property of the special normal form.
The further properties can be established by means of the following theorem: /88
Theorem 7: Let, in addition to the fundamental subsystem (76), another

fundamental subsystem be given:

AT N - - ‘;\‘.-" A A
119h ’(”(n"l y(“-rq“",:-n; 5(4—_1,_, q{n)fm’?[h]) '(#V), (87)
so that, in contrast to eq.(74),
mk - ik>¢ ;1'- iv (88)

the following simultaneously applies:
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0g1,- 1, < 2, (89)

The right-hand inequality in eq.(89) is trivially satisfied. Then, by super-

e

position of these two systems, a fundamental subsystem lﬁy‘T analogous to

’
¢

eq.(76) can be formed for which the functions @(vi, oo @:vf, which are peri-

odic with P all will have the mean value gzero. In this case, the fundamental
AT R
system 1t remains unchanged.
Proof: If the new solutions ﬁu* of eg.(51) are formed in accordance with
the stipulation
P for peon sty mti-g-1
ke 8 ’ (90)
d. = .
Jf‘-‘:(i)f,«—-(lvl *Ly—s‘,,) forpstntizt It eyt Rt <0,

the following will be obtained, because of eq.(l4), for the corresponding func-

. Lo
tions ¢, " :

£ l?,' for M) NiZE A ')('”fl'/-:.-d'

A

P = A .. . e ol 4. A-1=[}-

4 ‘2: Fiorgu-(n+is ) for Y R R L S Rt ) (91)

Here, eq.(89) guarantees the correct values of W for egs.(90) and (91) while

eq.(88) ensures that
(R) & (Rt - (on4i,~4,) (L]

is applicable. It can be confirmed that the functions §,” from eq.(91) have /89
a zero mean value since, for u = (v) + iy, we simultaneously have (k) + p -
- ((v) +iy = 4 ) = (k) * i« Thus, theorem 7 is proved.

Now, we can establish a certain normal form by also satisfying the condi-
tions 2 and 3 of its definition. Each elementary component will be denoted by
a pair of numbers (fy, iy) or (fiy, Mmy) if no iy exists. In addition, we calcu-
late the differences my - iy and define a sequence of number triples (fy, iv,

my -~ iy) or (fy, fiy, O). First, the subscripts v with the smallest iy will be

defined. Among these subscripts, one is selected for which fiy - iy is as large
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as possible. After this, the elementary components or the number triples (my,
iy, fiy — iy) are so rearranged that the above characterized number triple will
be in the first position, after which we set the corresponding v = 1. According
to theorem 7, all other elementary components for which eqs.(88) and (89) with
k =1 are satisfied, can be so transformed by superposition with the first ele-~
mentary component that no more iy will exist for them. The already determined
first elementary component will remain unchanged. Since, in any case iy = i3
and since, for iy = i;, we automatically have fiy — iy <My - i, this means
that the possibly remaining number triples for which an iy still exists, will
satisfy the conditions iy > i; and m, - iy > fi; - i;. Of these remaining
triples we again select one for which we will pose v = 2 so that, at minimal iy,
the My - iy becomes maximal. Here again, a superposition in accordance with
theorem 7 will make it possible to transform the elementary components for
which eqs.(88) and (89) with k = 2 are valid, together with the above~defined
second elementary component, in such a manner that no iy will exist for them

whereas the number triples for which an iy might still exist will satisfy the

conditions
iy»ip¥yi, and B, - i@, - 1,08, - 4,

We continue in this manner and finally obtain a sequence of elementary compon-
ents with number triples (fy, iy, My — iy) for v =1, 2, ..., A, where the /90
following is valid for v = 2, ..., A (naturally, A = Oor A = 1 is also pos-

sible): oy .
priyaa o Bm 30 m, 4 —dy

from which also fiy > fiy-; follows directly. Then, for oy = O the elementary

components with the characterizing triples (fy, My, O) for v = A + 1, ..., )

might possibly be left over, which can be so arranged that fiy 2 fiym; (for v =

= A+ 2, vee, p) is valid. The elementary components with oy # O can remain
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unchanged. This finally establishes the special normal form.

Section 5. Completion of the Special Normal Form of the Fundamental
System of the Reduced Homogeneous Differential Eguation
into a Fundamental System of the Original Homogeneous
Differential Equation

The purpose of this particular Section is to obtain proof of the following:
Theorem 8: Based on the special form (59) resp. (60) of the fundamental

system of solutions of the differential equation (51), a fundamental system

W) = P) - Toe) (92)

of solutions of the differential equation (6) can be obtained, in which case

fg(t)=e"€t, St + P =~ Ft) (93)
but where the constant matrix 8 does not necessarily have the Jordan normal form

[see alsoegs.(108) and (114)].

The proof must proceed in several steps. Primarily, we establish:

Theorem 9: If, in the case ay = 0, eq.(71) is valid for all values of p =
= (v), ..., [v] as well as in the case @y # 0", the solution submatrix YH [see
eq.(61)] of eg.(51) can be thus completed by a matrix vm* into a solution sub-

v
matrix 9 of eq.(6) such that, once more,

]9: V{Q = & [1% e ‘i w . (924-)

is valid.

Proof. PFirst, let us consider the case j = 1. So that the direct argument

L]

Se>

£ (95)

«, ¢ _ T
4?9 = ¢ "," - e

# And thus also ay # 2%?1 [see (Bibl.l), eq.(20) with q = P].
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[see eqs.(81) and (80)], after one differentiation, will lead to /92

8 G e (96)

<ty
the existence of the following differential equations for o vy(t), ®cv)+1(t),

eess ©ryy (t) will be necessary and sufficient:

™ ‘ A
Y 1 %, ('(v) = 'f(,;)

1 A
Corer T% T " L4 T

) (97)

Yy n
‘f[v_] f‘y ‘fr,‘] = “fcyj [»]- 14 7

from which, because of the two possibilities of theorem 9, functions @y, (t),
eee, Peyvy (t) periodic with P can be successively determined for ay; these will
be defined uniquely in the case @y # O whereas, in the case ay = O if eq.(71)
applies, they will be defined uniquely only if it is additionally stipulated
that all mean values are zero. In the case of j = 2, the same method of reason-

ing is to be applied first to

T d)‘t - T }t
119,; = & lq’r e ” (98)

instead of to eq.(95), after which the 1@y is determined from eq.(95) according
to the same syllogism, by substituting eq.(96) with eq.(98). The procedure is
wholly similar for the remaining values of j. From this, eq.(9L) of theorem 9

will follow if - a A
46; = Z, 1 -); (99)

is also taken into consideration [see the egquation corresponding to the second

relation (11)].

This leaves the case oy = 0, at validity of eq.(72), to be considered. Un-

der introduction of the vectors an with the components /93
1 for =4,
e = .
Uk S o for Aty (100)
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e

we resolve
=T =
gJ0 = 4 t n, ° (101)
As in the proof for theorem 9, we can first determine a uniquely defined row

vector 1¢v with the mean value 0 so that the Jth derivative (notesv =8 v)

. 3v‘ a1 Syt . §ve
of 1@v e is exactly 19y °* e = . By j integrations of ny' ° e we ob-
tain the row vector
t'j tvj"‘q 1;'J+m7-i’- 1
(o,...,o,ﬁ- » G 200 (102)

From this, we have:

Theorem 10: In the case @y = O and eq.(72), eq.(94) will be replaced by

b4 PN
v ~ . vank_  vr X s v ¥
Y-|7g = g =P e B o (103)

with . . LA . 1
3 t‘]+1 Ity = 1y~

t -
v x o,...,o.ﬂ.mq;--,m

9wy -| - P .
: £ (101,)

OsaeeyOy Ty ST secen L - i1t

Instead of eq.(103), we can also write

X v g ¥
y V@ 3t f
= A e e
9 "3 i J (105)
Finally, j integrations of the trivial solution system /91,

'ﬁ'g = (0y004,0) (3 zeros )

will yield the row vector

T 3=
2 - (1,t,..., %jj-ﬂ-) (106)
from which the solution submatrix .
™ -1 Q..-t‘-'
tg![’) Cot. ‘_—"._“', i;t ,,Zt
(-] _ s H _ c _ e
Y- [5=10 s | =|S=F
S T VA r (107)
9 - ]
AR |



is obtained. By adding the matrices V* or Y& of theorems 9 and 10, we form

1. 'é‘ﬁ

fd): 1
”~

r| ¢

Similarly, we form (see theorem 10)* the quantity g*(t) by addition of the ma-

the matrix &°(t) and write

(108)

trices v@*(t) according to eq.(104) and then, taking eq.(107) into considera-

tion, put ° *
49 = 3' 59
p| A (109)
e

This will yield a fundamental solution matrix ¢(t) of eq.(6) in the form of /95
eq.(92), where already the second equation of the system (93) possesses validity.

To furnish a complete proof for theorem 8, it merely remains to be demon-
strated that eq.(109) can also be written in the form of the first equation of
the system (93). This is automatically the case if no @y = O with the validity
of eq.(72) are present, i.e., if the theorem 10 need not be used. Then, the

matrix §(t) of eq.(109) will already have the conventional form:

1 [
T S )
b (J':’?!
AR &2
%0)‘ e =& (110)

with

A = — (111)

v\ &

% In the case of theorem 9, we must use "§(t) = O.
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and

£ e =

. 1 | (112)

i

of the order m = j. Here, & has the Jordan normal form.
Generally, the following theorem applies: /96
Theorem 11: The matrix §(t) according to eq.(109) has the form of

ﬁ,(t) - e‘t (113)
with

&. 'ﬁ1 'j‘\ r |-

K ﬁg} (114)

>

At

v

where, in addition to the components &, ﬁl, vee, ﬁ,, only the matrices”

0 e £21

.il = . ) V=2 4,...52 (115)

o . . . o

o...a,1,0 - A .J

#* For the meaning of A, see the definition given in Section L. In the case A =
= 0, eq.(116) is transformed into eq.(110) or eq.(114) into eg.(111).
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with a 1 in the jth row occupy the position 1 + iy. In the case A > 0, eqg.(114)

will not have the Jordan normal form.

Proof:

(107)1:

a(‘)-

By differentiation of §(t) to t, we obtain

&b | gt -] Cgle | 0 v
&,
e
A,t
e
Aa'lﬂ.b
(A
Ayt
[ A
d.t 4 t. a l'
A I N A i
Rt .
e -41
Rt
e -4&1
At
e”'.£
At
At
s A
e -aﬁe
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Explicitly, the matrix $(t) reads as follows [see egs.(109), (104),

(116)

(117)



with (note: iy =&y for v =1, .e., A)

- i v -i-2
» *' LTRRNY P R ".';---:_,—_‘ v '
‘ﬂw- : (a-"1 It .(af a""";"!
R

1 ¢
0320 F) > e T~
%% EyreTy

R Jrs t:}-‘-“v-g—v :11
oy + 90, — & ey & _ 9y 0, Dy oo
| 3T tiam I N G’ e
- . 3 : y
5,45 s R4 '
Oyp0r# 2 n """'(2'"—.":,‘_. ,)...,0,1 205..43 0
i.e., according to egs.(104), (107), and (115): /99

"&}*{e) = y"g*m 43, 1'."}“%./6,- . (118)

Hence, eq.(117) will yield

t b, ~ A ep @
e& -é. 3’» *-3%' '\f}*dﬁ“‘l&'% r r
&1"’ A
e - R
! ﬁlt A
30): e . &A (119)
d}\ﬂ.t £
E‘ “Tan
5 I
; df‘t Al
i e t-é,.i
[ 3

From this, on the basis of egs.(116) and (114), the following equation can be

read off:

’9‘@) -9y - A (120)

Further, in accordance with eqs.(116) and (104), we obviously have
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f?.(o) -Z. (121)

However, eq.(113) follows from eqs.(120) and (121) [see, for example (Bibl.3),

SeCtOBQl;_] .
As a corollary, we should note: For the matrix §, defined in another /100

report [(Bibl.l), eq.(10)] and which is constant in accordance with the same
paper (theorem 1), the following is valid:

¥ -1 19® - o - A7, (122)
For this, besides eqs.(92) and (121), only the second equation in the system

(93) as well as eqg.(113) are needed.

Section 6. Construction of the Jordan Normal Form for 8 /101

Now, we will have to bring the matrix f, defined in eq.(llh), to the Jordan
normal form & by a similarity transformation:
AL AL (123)
The pertinent fundamental solution matrix of eq.(6), according to eq.(14) and
according to our first paper [(Bibl.1l), eq.(14)] will then read
Yoy - Y L e G+ oA (121)
This consideration is necessary only for A > O in eq.(114); at A = O, we can
put € = . The collineatory transformation (123) is performed in j individual

steps, in which case, for v =1, 2, +se, J the similarity transformation

.4‘—1. /‘"%' ’/}‘_ - /-’é- (125)

will produce a chain of matrices &ﬁ whose first link (4 = 0) is formed by the
matrix °® = & and whose last link is formed by the matrix ‘& = 8%, In this

case, each matrix "R will have the following form:
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':)'n %. “’ q:
7,

o - (126)

9

1
where the matrix "9° = r*h‘

] has the order (j - k), while the matrices HSV =
= [Jﬁw] (for v = 0, 1, ...: A) have the orders’

E Ao, = R, Mia(mad, ) - Min (asdy) (127)
For the quantities which occur in eq.(127) and are not yet defined, the follow-

ing must be set

R4

o= 1,=0, Min (Msigeq) =P (128)
Obviously, °my = fiy. The matrices uﬁv, also occurring in eqg.(126) and having
unw columns and j — & rows, contain a 1 for p < iy in the last row and in the
(1 + iy - M)th column and also contain a 1 in the last row and first column for
iy € < iys1, but otherwise only zeros. In the case b 2 iy+1, the quantity %Qv
is the zero matrix. Here, the undefined iy+: constitutes no restriction.
Obviously, ‘e =Q° has the Jordan normal form while, for 4 = O, the quanti-
ty °®& = ® according to eq.(114) has the form of eq.(126), It should be noted
here that, because of °m = 0, no matrix %o respe. Oso occurs. In what follows,
we will make an induction from ¢ ~ 1 to M. For this, we define a subscript

£(1) for each b = 1, 2, eee, j in the following manner: If u falls into one of

the intervals with the end points i3, iz, se., iy (the left-hand end point is

# See the definitions at the beginning of Section L.
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included in the interval while the right-hand point is excluded), we will denote

the left interval end point by ig(w). Thus,

i gm< for 4, § < 4 (129a)

tm
For the not yet covered values of W, we assume

<
41

lipr= o for A f 4:1 (129b)
“(") = A for (“'), “A . (1290)
The following relations, derived from eq.(127), should be noted: /103
b} . 2 A .
d-~ ‘fz,‘""y =3 ‘?Z,‘ ™ = a+[a], (130)
vz 0 =

where eq.(21) had been taken into consideration, as well as

= S &, = 3t )] (131)
d-A+S 1 m_ =4d ¢ m = dt [
2 T ™
and
~ = :‘I\I. or .
S S (132)
It is useful to repeat the matrix (126) in a more detailed form (for u >
> 0):
“k | H A
e oo cqmy M a
o A ) I M 4
A
“x
ﬁ
“")",,, 3
»
~ e
A= (133)
ﬁ
'Z(‘,u)ﬂ
‘l
A
|
X
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The matrices €, in eq.(125), to be constructed next, have a differing /104
structure depending on whether the indices & - 1 and b belong to the same or to
different intervals (129a, b, c).

First case: We have
l(f-') = ‘(/‘) »

(134)
i.e., the following is valiqd: .
e g $6TTL Arpemmns T s for L Lo (135a)
or, in the two limiting cases,
OL =18 <dy for mg4d (135b)
QEaI for p3 (135¢)
In this case, we put
~ *
L= LT W (136)
h t first that].. ) .
where, at first, we assume tha o0 r 0 ’{‘%"M “La ’
¢
“,
La)
Z
. ‘f"'f’"
x e~
4‘- tm-1)
js—1 i 1
Pl (137)
1~
f.-i
%
4 -
— .'

The orders of the unit matrices p'—lgn, F"1Go, aees u'l@x correspond to the /105
orders of the matrices P87, ¥ 3., ..., ¥ 18, in the matrix P '8 [see

eqs.(126) or (133)]. The matrix “(;v, as already shown in the matrix (137) is

a null matrix if the matrix "'y is also a null matrix. The remaining matrices

p’(SJv for v 2 A are calculated on the basis of the transformation

91



ﬂ_/; - M ~/‘—:7,T (138)

> b4

from which it follows specifically that also the matrix U'GL(LL - 1) is a zero

matrix.

Relative to ®™'qy with v > 4(p -~ 1), the 1 in the last row in u@v is
shifted one place toward the left. In the case of “"IFISM, the ones in M gy
with v > 4(4 - 1) are supplemented by a 1 which is shifted by one unit toward
the left top. Since Ygy™' is formed from “(sv by replacing the ones in the Lj'(Sv
by -1, all ones in @u'l p"lﬁ‘(&u in the (j - p) row or “'lﬁ‘Gu vanish except for
the 1 in the first column of 7', (un - 1) in the case of u > 1.

This means that the matrix @,u*'* ”"lfﬁu* = Ma™ has the property that the
ones standing in the matrices H=tg, for u > 4(p - 1) are shifted by one place
toward the left top in a diagonal parallel to the main diagonal, while all other
elementary. components of the matrix W-lg are retained. Specifically, the one in
the lower left corner of the matrix “‘—lsu,(u. - 1) remains fixed for p > 1.

Next, we perform another similarity transformation with the "permutation
matrix" $, which is produced from the n-row unit matrix, by supplementing /10¢
the rows and columms having the numbers

. . ) 4 ~1)—~1 ;=9
FAtV s d-pmrts -, F-mtrt 2 ) ””w"*,‘.,
vye

(the next following column exactly has the 1 in question) with the cyclic trans-

formation matrix

(139)
T

In the case # < i; [i.e., 4(n) = 0], we must put %u = € because of the fact that

no excess 1 need be eliminated here. It should be noted that

Lo - (140)



In & «2 , the 1 which, until now, had been in the (j - & + 1)*R row at the

w
(ruey * l)th place, has been shifted to the place directly diagonally above the
still to be eliminated 1 which remains at its place; all matrices in the “‘lev,
located within the range of the matrix (139), are shifted by one unit toward
the left. In the case of By * H&* *B,, the same H=19y are shifted by one
unit toward the top while the 1 in the (j - u)th row remains unchanged; the 1
standing diagonally toward the lower left, which is to be eliminated, has been
shifted in the same column into the last row of %u, differing from the corre-
sponding row of the unit matrix, and thus changes ”'ISL(M_I) by one first row
and column to a HS&(M) with an order greater by one [note: 4(n) = 4(n - 1].
Consequently, all in all the new similarity transformation with %u shifts the
one, still standing at an unwanted place, by one place toward the left top, in-
creases the order of M-ls{(u_l) toward the left top by one, shifts the matrices
M_lso, =180, wee, “’lsa(u_l,_l by one place toward the left top, and finally
decreases the order of H=140 by one. This means that uSD receives the order

j — ¥ while Hsé(u) receives the order um&(u) lm%(u—1)+1‘ The other orders
are retained [see eg.(127)]. The ones in the (J - u)th row are now standing /107
as stipulated by eq.(133). Consequently, in this first case we have transformed

the matrix 7' with(Su =‘6pfﬁu in a similar manner into the matrix "A.

Secvund case: In contrast to eq.(lBh), we assume

Lep=1) < L(m) (ll"’l)
i.e.
. B . . . . . 1
4“/_.” §f. 1 (4“/‘_1""‘( -t‘wé/((ilwﬂ for-‘i\\v‘-’(/‘(ﬁ' ( 14,28.)
and, respectively, ,
O pISE g Jor M1 4 (142b)

/u4<“3§,u jor A 3-2.

(1y2c)
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Obviously, more accurately than eq.(141), we then have

L) = L(m=1) 41 and 4 -MmM=O. (1[_,_3)

LUm)
As in the first case, we first use the similarity transformation with the ma-

trix 6, “B,. As a result, we obtain the matrix

A _ =1 x| -t - X
*45 = %; d&; . & ,é“ .[QL » (1L1,)

in which the ones are standing in the (j - u)th row but [see also the second
equation of the system (143)] are now, for v = £(u) - 1 as well as for v = L{(un),
shifted to the first column of ;ﬁiy. Consequently, the matrix *PR differs from
the matrix uﬁ only by the one at the place (1) - 1 in the (j - u)th row which

is not present in uﬁ.

For eliminating this one, the following transformation is introduced:

b 2 F B, = T (145)

e(m) x CCpa)
with the "superposition matrix® 8L(p) which is obtained from the n-rowed unit /108

matrix if a um£(u)_l—rowed negative unit matrix is introduced there, as shown

in the matrix (1&6): Ao
;..{. .
~2,

F

%

~ ~

5- - - 46-,-1 4"
T (146)
o
xg.;)-f‘l
/"-{1
1 -
) 1

9L




In this case, the unit matrices have the same orders as the corresponding ma-
. L0 u W . . . -1 .
trices "9 , 80, ees, 9\ in the matrix (133). The quantity %‘L(u) is obtained
. . . TR
by substituting in By ) the inserted matrix _(SL( W -1 by *Cguy-1 e Already 8
has the prescribed new orders of the 9-matrices in Ya. Specifically, the order
of ""'18“ w has increased by one while H=190 has received an order lower by one.

The application of 8 o *uﬁ eliminates the superfluous 1, but brings the /109

401)
b :
matrix - 8, ., to the same place at which -Gy, is located in the matrix
(146); application of Saltm to the left-hand side will again eliminate this

auxiliary matrix so that we finally obtain “‘ﬁ*. Consequently, in this second

case we must put

- - X . 1
l/y = %ﬁ .%; _th“) ( h?)

As the overall result of our considerations, we then obtain:

Theorem 12: The matrix &, by means of the similarity transformation (123)

(148)
is transformed into its Jordan normal form
&, &
d.= " *. o
"k, (149)

Here, the matrices G, are defined by eqs.(136) resp. (147), w'ikth the auxiliary
matrices (137), (146), and the described éﬂh. The elementary compo.ents §fiy for
0 < v £ A have the following orders my [see eq.(127)]:
m, = @, + Min (3,i,,,) - Min (j,iy), (150)
where, accordingly, we must put v = A [see eq.(128)]
Min (3,i,,,) = (151)

for v = O:
B, =1, =0 _ (152)

o

#* By means of such a superposition matrix B, the proof of theorem 7 can be con-
ducted explicitly and 31mply, in a concise manner. b
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In the case of my = O, the elementary component $6° will vanish. At v > A, /110
i.e., if either Ay # O or if no iy at all exists at @y = 0, the following is

trivially valid: A
my = m, , specifically, m, =] . (153)

Another remark should be made here as to the correlation of the rows s
and 8. In accordance with eq.(17), s denotes the number of elementary com-
ponents in the original Jordan normal form of & so that s also will be the num-

ber of elementary components of eq.(149), which means that

~ 1, if m, > o
.s- st { o if m-o- (154)

is valide It is obvious (see theorem 5) that m, is zero if and only if the

mean value (67) differs from zero for at least one §(v)(t) (v=1, vee, P) since

then we have, correspondingly, iy = O. In the special normal form (see the

definition in Section L), we will have i; = O according to eq.(74) and thus,

according to egs.(150) and (152), m, = O.* In the other cases (i, > O, or ab-

sence of iy), we have my > O [see eq.(153)]. 1
It is useful to give an explicit computation of the transformation of |

into the Jordan normal form, using a simple example in which all possibilities

occur. Let

(i55)

A A . R :
i=t, ﬁ1=3, n,=5, m3=8, n=20, i,=2, iy=3, 13=5.

The general idea is demonstrated in the following matrices:
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BARREE" g ]r. “| 4
CAR I o B 1) 0 t'ml @ 1 @ ]
=5 :
(7]
'4‘ "
. 1
-Z 1 ‘[lc'
. -
"l' 'I'
A, t

il m] bl el e
].;.

o‘z 1 . '{ 1 .
[ - g
1 1
' kJ '
1 1
P ‘ . [
g
3 ' () ',
) £ 0" e
1 A=L* ALY, identical vith
Y ";' Wy % 1 Ir 7[ L #ad
»flal m | " R
1,’.“]‘. 1) ’E,. ! L}
vl ' l"
! 1 '
1 t [
%
[ L' ,
[] :
1 1
1 1
ta ! ]
,2" ' 15, s|
‘ 1 1
5 ~ X
~e
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/112

T ] ! '
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This completes the transformation of §§ into the Jordan normal form.
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Section 7. Solutions of the Adjoint Homogeneous Differential /115
Equation of the nth Order

The solution matrix o (t) of eg.(6) conjugate to &” in eq.(1L9), can be
calculated in accordance with egs.(124) and (148). Since, however, the condi-
tions for the resonance subcase and for the exceptional subcase [see eq.(28)]
contain the solutions 3(t) of the adjoint homogeneous system (11) periodic
with P [respectively of the adjoint homogeneous equation (9)], we will discuss
this first. Analogous to eq.(12)) and because of eq.(13), we have

g’m - Q) (L) (156)
We then again decompose the transformation § into the j subtransformations(&u,

according to eqg.(148): - T
TR = T (L) (157)

after which, we will investigate the individual matrices uf’,(t) forw = 0, 1,

eeey J, whose first and last matrices are

L ] 3 Py
(3 t) =?(H, resp. a ? 4y = ? t) (158)
We then partition the matrix u',’%(t), in accordance with the structure of uﬁ in

eq.(126), into & + 2 submatrices
A o Y
Do “Pwrsm T w, (159)
Y=o

O
where u8 , in addition to zero columns, contains only the first j - u columns
By oy B . v b R
of 3, while 7o contains the next "my columns, 3; the next following m
colums, and so on.

It is useful to introduce the following notation:

A

/‘ffi]] - J'/* 1/"940 + /‘mftw* m, e 0,1,...JJ'-- (160)

In the last step (B = j) we will omit the superscript [sec eq.(150)]:
3’[["’]] =[[":_]]= ™, ""‘1'*"'1' ™, = ;:o' :‘R 1'”‘.6(3-')‘;'.*1), Y= oo, :' (161)
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Then, the following theorem applies: /116

Theorem 12 The solutions Zryvy (t) (v =1, 2, eee, s) of eq.(52) periodic

with P are, in the same sequence, identical with the solutions zgrvjj (t) of

eq.(9), again forv =1, 2, ..., 8. Consequently,

-

(t) =z (t) for v=1,2,.0.,%. (162)

20l A

Proof: In the matrix °g(t) according to eq.(157), the solution vectors

periodic with P and resulting from the periodic Z¢yj (t) for v = 1, vee, §, are
exactly the ach(t) which means that they are standing exactly in the last
column of the 3y (t) for v = 1, 2, +e., 8. A successive application, on the
right-hand side, of the transformations described in the preceding Section

T
(Gal)T, (93;1)T =§3u and GBZ%M)) (if they occur at all) to the matrix u'-l8(t)’
will transform the last column of each b1 v(t) unchanged into the last column

of M3y(t)(v =1, 2, vus, 8)s Consequently, also the last component of these
colums will remain unaltered. By this inductive syllogism, the proof for

eq.(162) is obtained.

In the casemy, > 0, i.e., i3 > O or nonexistent, a further solution of
eq.(9) periodic with P will occur in accordance with eqg.(154) and theorem 5.
For this, the following is valid:

Theorem 14: In the case my > 0, the auxiliary solution vector periedic

with P is present in the last colum of *35(t); its last component which, con-

sequently, must be denoted by z(roji (t), has the following form:

s M - A .
- N W) . () - . .5 16
hy” D om, BOIR T 2 Y (163)
If no iy is present, i.e., for v > A, the last sum naturally is omitted. /117

Proof: First, it should be remembered that the quantities ,EL, occurring

Vv
in eq.(163), originate from the last (j%h) rows of the matrices ¢ in eq.(105),
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whereas the quantities @u(t) originate in the last [(n - j)t’h] row of the ma-
trix [see eq.(60)] . .
e = ($7)7 s (164)
where the row index n - j has been omitted here. Since all these functions are
periodic with P, this statement is valid also for the expression (163).

A column of ‘35(t) =go(t) occurs for the first time as the only column
of '8,(t). Since this column, at increasing i, alwa,ys:'z_y‘;femains the last column
of u'80(1:) with p 2 1, it follows - as in the proof of theorem 13 — that this
column cannot change anymore. Consequently, we have only a single column
vector 30 (t) of 8o (t) which is located in the jth column of 13(1‘,); its last
component is the sought z¢(o37 (t).

In the case i, > 0, formation of *g(t) =g8(t) * G.™* ) will directly

i 1
yield z = n2 0 - z w =
[r1) = Lea-d) t €a

A A
=,‘_2J(H - T z( . _1”;).
S P via

It should be recalled that the last row index n or n — j had been omitted in the

(165)

elements of 2 or @. In the case that no i, exists (B > 1), the second sum is
eliminated.

hceording to eg.(13) and in analogy with eq.(64), we have

-1

St X -1t T
?Tn): 19_1&): € 19 ¢ = ¢ g*”)
7 e r A% (166)

with At g ye _ /118
? = 19 and (]‘1;“=C— ° lq*“7? 'lt)J (167)

as is readily verified from the relation
7Y -¢.
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Taking the definition of m*(t) in eq.(6L) into consideration and also consider-
ing that ,zy(t) is the element in the right-hand lower corner of 3%T(t), the

following is obtained from eq.(167):

-

u—;' - " S Ly, - A
IETLERS i Y, ers->" 2 Z, ) Y, (168)
=1 »=1 o=
where [see eq.(64)]
Y. ) = Jgr(zu'z . (169)

is valid. According to eq.(165) this yields the intermediate formula

s L»} - o i, A t) -
SIS T zew Y., - z oq b
z[t-!] #=- Py ~ ,; i (170)
=1

Denoting, by C(v)s1y-12 & fiy—component vector which, in addition to zeros,
contains only an i in the ((v) + iy - l)th component, the vE subsum of eq.(170)
can. be written as follows for v < A:

[x2]

< A > 4
T, = - Z z/‘a») \:“m - z.,,,“-’q ) =
ﬂ..(}) < -

j 3‘1) T

v
.

= - (Z-(y')"'l 3[,]) : : +‘t;v)fl."-1
J JA[vJ""JT

Taking into consideration the formula for the reduced differential equation,
which is analogous to eq.(43) and, in its subdivision, analogous to eq.(65) as

well as considering egs.(103) and (104), we will obtain

N &1

[~ ° 7
j.f(w [o
P - . 1
u Aoyt e
To== (Yo ¥)e ~ Je |1 Y & (171)
2l i
ipl | (&=
| = ""Jj
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where the 1 as the ((v) + iy - 1)th component of the last vector driginates

8T.¢
from C(vyy * iv-1. This last vector, however, is exactly e *C(y)+1y-1 SO
that we obtain further
j"rv)
~ ~ .
T, = - (“f,,,l---o ‘rl:v.‘.l) . ~ + {'V’f i
c it
v A o~ » 172
» - Yu e - er-ﬂ"" for »=1,54 . ( ’ )

In the case v = A + 1, ..., §, taking eg.(94) into consideration, the last
vector in eq.(171) is omitted. This will yield

[VJ - -~
T, = *r,.‘,"fm for Y=+ 1,...,3 . (173)

A~y

From egs.(172) and (173), we directly obtain eq.(163).
In passing, we note the following:
Theorem 15: The function zgro3j (t), investigated in theorem 14, satisfies

the inhomogeneous reduced adjoint differential equation

= . n-3 _ (n-3) a-j-1 _  br-g-1)
L] =0 a 60 (..,u) tet 4“1_2 =1. (171&)

P et

Proof:! In view of egs.(52), (56), and (57), it merel r must be demonstrated
that a solution vector Ut
al AT A (175)
R IO 16D
with /120

- (t) =

O sesO D

(176)
exists whose last [(n - j)®] component is ztro31 (t).
The variational method for the constants [see (Bibl.l), footnote 9] fur—

nishes the following relation as the general solution of eqg.(175):

A t/\
2w -9Qm “19 T grda 14:) (177)

with an arbitrary constant vector ¢ and, as the last component,
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s I - ¢ A
u,_y(8) = Es Zv ) . (8 (...] %*(ﬂ-l'z +c/‘.)- (178)
o= v=1 ~

=C(vd

According to the general theorems [see, for example (Bibl.1l), eqs.(16) and (17)
and the context therel, eq.(175) has a solution vector periodic with P if the

following applies for all solutions of eqg.(55), periodic with P:

~

_} 3‘.” tD)dyr =0 for vehd,. ., £
°

This is exactly the condition for my > O [see for example the remarks after
eq.(154)]. Consequently, eq.(178) can then be determined as a function periodic
with P, The lower limit in the integrals can be so defined that ¢, = 1 applies
forw = (v) + iy =1 (v =1, .e., A) while it has a value of zero everywhere
else. Now, eq.(178) obviously coincides with eq.(170) which means that theorem
15 is proved.

By j differentiations of eq.(174), we again verify that zrco,3 (t), obtained
from eq.(165) or eq.(170), is the solution of eq.(9).

Section 8. The Minimal Order of Magnitudes of the Solutions and /121
their Derivatives for the Resonance Case

With respect to the resonance case for the differential equation (1), the
following statements can be made: The adjoint homogeneous differential equa-
tion (9), as defined in the preceding Section, has the solutions zrro11, Ztri111 s
ceey ZLLHTI periodic with P, where zcg131, «+e, Zr¢pry according to theorem 13
is identical with the solutions Zriy, «.., 2t periodic with P of the adjoint
homogeneous reduced differential equation (52) and zgroy3 occurs only in the
case of my > 0. Consequently, if the resonance subcase exists for the inhomo-
geneous reduced differential equation (50), for an index v > O, i.e., if the
following is valid [see eq.(28)]:

106



P oA
3[ 3, (D fersdxr = @r.q Fo, (179)

then the resonance subcase also will exist for the inhomogeneous differential

equation (1) for the same index V; consequently, we then have
. .
! 2p,g@) Fmrdr = g =% to- (180)

Speaking generally, we will denote any index v, i.e., also v = 0, as a resonance
index provided that the resonance subcase exists for this ve. Thus, we have the
following: If v is a resonance index of the reduced differential equation (50),

then v will also be the resonance index for the differential equation (1).

We must now differentiate between the following cases:
I. No resonance index exists.
II. v = 0 is no resonance index, but at least one resonance index

v > 0 existse.

III. v = 0 is the only resonance index.
IV. v = 0 is a resonance index, and at least one index v > 0 exists
which alsc is a resonance index.
The points I and II also contain cases in which the solution zgroj; is not

present, i.e., in which i, = O applies.

In the Case I, either the principal case or the exceptional case is /122

involved for the reduced differential equation (50). For the differential equa-
tion (1), at iy = O, the same case as for the reduced differential equation (50)
is involved. At i > O, the exceptional case is present for eq.(l) since at
least one solution zr(oj3 , periodic with P, of the adjoint homogeneous differ-
ential equation (9) exists.

In the Case II, the minimal order of the power increment #i of X(t), accord-

ing to theorem 2, is determined by
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2= Max (B, , (181)
Mo

while the analogous order of increment m of the solution x(t) of eq.(1l) is de-

termined by
m = Max (m,)

5g) (182)

wz e

with my according to eqs.(150)ff, with the rescnance indices being the same in

both cases.

In the Case III, the resonance case is not present for the reduced differ-

ential equation (50) but is present for the differential equation (1). The
resonance order for x(t) is defined as [see egs.(150) and (152)]

m o= m = Min (3, i,) , (183)
where, if nc i occurs, eq.(l5l) must be taken into consideration.

In the Case IV, the rescnance case exists for the reduced differential

equation (50) as well as for the differential equation (1). The resonance order

for x(t) is defined by ‘
m = Max (m,) - (184)

Rea.
(:: 7% T ?)
In determining the maximum, the quantity my can be disregarded if, for at /123

least one resonance index from the interval 1 < v < § one iy exists; in that
case, the corresponding my > m, according to eq.(150) because of my 2 fi; >
> rm(j, i1); see also the definition at the beginning of Section /.

Similar statements apply also to the derivatives X (t), x"(t), c..,
<37 () if, in the cases I to IV, the index j in the kI derivative x**’ (t)
in eq.(150) for the my is replaced by (j - k). The given increment orders, in
the case of resonance, are always the minimal orders. It is entirely possible
that, for example, x(t) represents a solution with minimal order (with the in-

dex j), while the corresponding derivative x' (t) has a higher order than the
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minimal order valid for j - 1. Conversely, it could be that x' (t) is a solu-
tion with the minimal order valid for j - 1, while the once integrated function
x(t) = f x (t)dt has an order which is higher than the minimal order valid

for jo This is due to the fact that, for different indices j - k, no differing
determination of the parameter constants is necessary if a solution with minimal
order is to be obtained in each particular casee.

For explaining our discussions, the following example is used:

Let fiy =3, fig =5, flg =8, My = 4, 5 =10
i, =2, iz = 3, i3 = 5; iy and is do not exist.

Consequently, it follows that

A
S=5,5=6, n-3 = 30.

First, we again compile the formulas which are valid for the orders my [see

eqs.(150) - (153)1%:
/121

B
"

Min (3,11)

~
l m, = my, + Min(,j,iy+1) ~ Min(j,i,){(for ¥= 1,..., 2 =1)

m, = @, +3 - ¥in (§,iy) . (185)

~
m, (for »=2a+1,...,%).

B
X
[}

Accordingly, the following results are obtained for the new j~dependent orders:

,jfnrj<2

m, = Min (2,3) 2 for j 32

, , 3 for § g2

= M - Mi 2, =

m, =3+ in (3,J) in J 4 for § &3

5 for j £ 3

m, = 5 + Min (5,3) - Min (3,3) =9 6 for j = 4

7 for j g5

) ) . 8 for J £5
m3=8+3-M1n(5sJ) {J— 3 for j 36

=44 ) -3 =4

10 + j - 3 = 10,

% If the definition (195) is used, eq.(185) can be made more rigorous by re-
placing the index A by Y.

109



This results in the Table:

j=o} 17} 2] 3| 4| 516} 7]8 ize
m, o 1 2122|2121 2]2 . 2
m, 3 13| 3]a|lalalalala 4
m, S 515|516 71717 7
ln3 8 8 8 8 8 8 9110 |11 Jj+3
m, 4 slalalalala]la]a 4
m5 10 10 110 110 10 {10 |10 } 10 |10 10

Of these numbers, according to eg.(18L), the maximum must be formed at fixed Js
for the indices for which the resonance subcase exists. /125

For example, if the resonance subcase exists for v = 3, then m will be at
least equal to mg. In any case, however, mg is the maximum foyr j = 6 so that
m=mg = j* 3 applies for j 2 6. This means that the minimal order m finally
increases linearly with increasing j.

Conversely, if the exceptional subcase exists for v = 3, the quantity m
will never be larger than ms = 10, If the exceptional subcase also exists for
v = 5, the quantity m will never exceed mp = 7; and so on. It is easy to demon-
strate that m retains a constant value if the exceptional case exists for v = 3,
at least beginning with a certain index j.

In general, it is easy to confirm the following theorem on the basis of
eq.(185):

Theorem 16: If the resonance subcase is present for the index v with the
greatest existing iy, i.e., for v = A, the minimal order m, beginning with a
certain index j, will increase linearly with j (see also the definition in
Sect.) ). Naturally, this index A is already defined before the special normal

form is established. Conversely, if the exceptional case is present for the
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index v = A, the minimal order m will remain constant in any case, beginning
with a certain index j. In all other respects, the behavior of the minimal
order m, as a function of j, follows from the formula (184): m = m(j) is parti-
ally piecewise constant and partially increases linearly with the slope one.

For each index v for whichaniy exists, the pattern of a broken curve will
be obtained according to eq.(185) for the minimal order my as a function of j,
which has a horizontal slope for O < j < iy and for iys1 < j, whereas it has the
slope 1 for iy < J < dysqe

-~
For 0 { j § iy we havem, =m, ,
for i, 4 & J we have m, = ﬁ, + (i’_m—i,) ’

for i, 5§ 1, qve hovem, = m, + (3 - 1,),
where, if iy+1 no longer exists (Vv = A), the last law is valid for all j = iy:

/126

>

H
l‘" y’
L |

L J
R
‘h
3
.
Lﬁ
».

|
l

Fig.l

Since the following relation always is in question for two indices vz > vi with
existing iy, and iy [see eq.(74)]

Byy = By > dyp - v
the curve for the index Ve will begin with a constant which is greater than the
end constant for the index v;, i.e., the curves for the various indices vy and
vz with existing iy do not intersect. For each index v for which no i, exists,

my = fiy will be constant for O < j.
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Thus, the following statement is obtained for the minimal order according
to eq.(184): Let Vv be the highest index v with existing iy for which the reso-
nance case is present. In addition, let vV be the highest resonance index at

nonexisting iy. Then, the following obviously applies (see definition 3 in

Sect.l,): n - Max
(o)

where the pattern of my as a function of j, yields a broken curve (see Fig.l),

(my) = Max (m;7 mz)v (186)

while my is a constant.

We would like to mention™a few interesting relations: In the case that /127
only v = 0 is the resonance index of eq.(1l), i.e., in the case III, at least
one solution X(t) periodic with P of eq.(50) exists as we already know, whose
mean value can be either equal to zero or different from zero. Then, the fol-
lowing theorem applies:

Theorem 17: If i; = 0, i.e., if no solution-z[[o]] periodic with P of the
adjoint homogeneous differential equation (9) exists, then - if at all - solu-
tions %(t) of eq.(50) periodic with P will exist whose mean value differs from
zero, as well as solutions whose mean value is equal to gzero.

If i; > O or if no i; exists and if a solution X(t) periodic with P whose

mean value differs from zero is present, then also every other solution %(t)
periodic with P will have the same mean value differing from zero and v = 0 will
be the resonance index. Conversely, if a solution X(t) of zero mean value and
periodic with P exists, then also all other solutions ®(t) periodic with P will
have the mean value zeroc and v = O will be the exceptional index.

Proof: We can write the general solution X(t) of eq.(50), periodic with P,

in the following form: :

»~ A* A~
x(t) = x (t) + E c, y(i)(t) , (187)
3
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where £ (t) is a special particular solution of eqg.(50), periodic with P, while
the sum next to it represents the general solution, periodic with P, for the

homogeneous reduced differential equation (51).

In the case i, = O, the quantity §(1) will be a solution, periodic with P,
of the homogeneous differential equation (50) with the mean value 1. The other
solutions § ,, (v = 2, ..., p) of the homogeneous differential equation (50)
have the mean value O. This shows directly that, by a suitable selection of
the constants c,, the solution %(t) can be made to have a mean value of zero.
Conversely, it is also possible to make certain that X(t) has a mean value /128
differing from zero.

For iy > O or for nonexistent i, all solutions §,, periodic with P, of

the reduced homogeneous differential equation (51) will have the mean value
zero. From this it follows that all solutions %(t), periodic with P, must have
the same mean value as 27(t) (the case = O is included here).

Then it merely remains to be demonstrated that

P #0 resonance
from £ %(t)dt it follows B v =0 exceptional (188)
respe ~ 0 index

We will demonstrate this indirectly: If, for the differential equation (1),

the exceptional case were present, i.e., if v = O would be the exceptional index
[the principal subcase cannot be present for v = O since the homogeneous differ-
ential equation (6) has at least the solution y(t) = 1, periodic with PJ], a
solution x(t) of eq.(1l) periodic with P would exist whose 3P0 gerivative

249 (1) = x(t) is a not identically vanishing solution, periodic with P, of the
reduced differential equation (50) with the mean value zero. However, this
would mean that all solutions %(t), periodic with P, necessarily must have the

P
mean value zero. If, consequently, gﬁ(t)dt 7 0, it follows necessarily that
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P
v = 0 is the resonance index. If, conversely, f %(t)dt = 0, a solution x(t) of

‘the differential equation (1) can be obtained (gee the auxiliary theorem in
Sect.3) by j integrations of the function %(t), which is periodic with P and has
a mean value zero. This means that the resonance case cannot exist for the
differential equation (1) so that v = O must be the exceptional index since the
main subcase had already been excluded above for v = O, This proves theorem 17.
From this theorem, the following statements are obtained: Whenever the /12
quantity J: Zrroyy (t) f(t)dt differs from O, i.e., whenever v = O is the reso-
nance ind?ax, f %(t)dt will differ from zero for a possibly existing periodic
solution fc(t)oof eq.(50). Whenever [? zgro1y (t) £(t)dt is equal to zero, i.e.,
whenever Vv = O is the exceptional incziex, the quantity ffc(t)dt will be equal to
zero for a possibly existing periodic solution %(t) ofoeq.(SO). Consequently,
a relation must exist between the mean value of such an %(t) and the mean value
of the function z¢(oyj (t)f(t). Thus, the following theorem applies:

Theorem 18: If, in the case i, > O or nonexistent i;, the reduced differ-

ential equation (50) possesses a solution %X(t) periodic with P, the following

equality will apply: P 2
2 (189)
I OHOITE Jx(t)dc.

Proof: This can be proved by means of Lagrange's identity [see, for ex~
ample (Bibl.)), Sect.5.3]

A a - A x oL
zn.u.l..ij—x-bl_:’!.n-u] =J“i_ L [;:Z[:.JJ -

-1

oy AN ) Jrodepet) ) g
Eiil} (m 3pcg) -~ (4 2urg)p-ten 2.
£ :

g1
(% 1) ]
(a0 = 1) in the following manner: |

Using [see egs.(50) and (174)]

11,




112} - £(t) and ,I(J[z[’:o]ﬂ -1
we obtain

A d X ra
zEQy(t) £f(t) - x(t) = i L [¥'zﬂkﬂ]’

(190)

where L¥[%, Z¢ o031 ), because of the periodicity %(t) and zgroy; (t), is a func-

tion periodic with P whose derivative, obviously, has the mean value zero.

this, the argument is directly obtained.

Section 9. The Order of Magnitudes of the Derivatives of the

Solutions in the Resonance Case

From

/130

In statements on the order of magnitude of the derivatives of the solu-

tions x(t) of eq.(l), for the resonance case, it is of importance whether the

solutions y((v))(t) = ¢c(vy) (t) [see eq.(14)] of eq.(6), periodic with P, are

constant for v = O, 1, «+., P or whether they actually depend
eg.(21) and thus also eg.(16l) are analogously defined:

A A

A
((»)) = m oM 4t . 4D, g4+ ] = M +moteeedm, o+

+Min (J,i,) + 1 = (¥) + Min (§,1i,).

For this reason, let us start with an auxiliary consideration

on te Here,

(191)

which describes

the transition of the matrix $(t) from eqg.(108) to the matrix ¢ (t) from

eq.(124). Primarily, according to egs.(124), (14), (92), (113), and (123), we

have
Qe = ¢%w cé?t =Qwed =Fw s
s G LI Fr Fgrd” e’f"é-'[}:
. = é’”[-ai.t,
i.e.,

W= duy L

(192)

with § from eq.(148). In the elements of the column blocks v@(t) with v = 1,
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eeey, A Of ¥(t) from eq.(108), the partition is made analogously to eq.(10l).

Then, we can write

go = got 1o (193)
where the matrix'a(t) contains only zeros in the colums 1, ..., j, and contains
kzi(t) of zero mean value in the columns j *+ 1, .... n; the matrix & contains
only ones, etc., in the first j places of the main diagonal and, on partitioning
(in a readily understandable symbolism) /13

125271, (294)
into %B, it will also contain ones in the diagonal below —450 beginning at the
element V£J+19(V)+1v' For this concept, it is necessary to consider not only
eq.(105) but also the fact that the rows of M(t) result from each other by suc-
cessive differentiation [see eq.(8)]. An application of the transformation ma-
trix € tolg(t) furnishes, in all columns, always only elements of zero mean
value. For this reason, the effect of the individual partial transformations
(148) and (147) on £ will be investigated first.

Tor greater clarity, we will do this on the example (155) given at the end
of Sect.6, with the exception that now j = 7 (instead of j = L) is used so that
all imaginable cases [see eq.(185), specifically the third relation] will be
covered by this example. The matrices 63} giiu) and.%u, constructed earlier,
need now be only supplemented by 7 - 4 = 3 ones, placed in front of the main

diagonal. The following 19 matrices perform the stepwise transformation of

into &° =8y,
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It is also useful to perform a stepwise transformation of the matrix E(t)
into 50(1:) on hand of the same examples. This will be done in the following /136
11 matrices where (except for a few obvious exceptions) only the column indices
of the functions Gy (t) = év(t) oceurring in eq.(10l1) are given, which at first

appear in the (j + l)t’h row for ’E(t) = Eo(t).
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Let the first row of the matrix & = &, *+ @, again be written explicitly

for the cases j =1, 2, 4, and 7, i.ee, ¥ = 0, 1, 2, and 3; =33 i, = 28 /113

iz = 35 iz = 5:

}ﬂ" Tt T’ Tores l"’” ! "?"3’4-1 "ty T’ 'ﬂoﬂ Feors ,
Fen J‘fn)h"fn)-fz "I,””aﬂ‘ '-f{”’_q “’i's)u' c?" ;,; )
J"<- T s I s Toer’ ‘fmﬂ l~ A A Tord ‘Zz;ﬂ 7 )f"’
ip’ ‘f(DHN'I;)g ‘f,”*’» g > ;(

(D+y J)H" 13)” ’ "('pf? )

(- % T BT T3 ¥
k0" Fe1l” To" " Taest Yo Tt 'ffon’ 7{:»3* 1+ L3

‘f F > Fl
o tl)fl "(l)f! (!)f'll 773 '{am’ ";x)ﬂ "(m: ?uw' ‘;;m-' znu"an%

. ~ ~ ~ ~ ~ -~ ~ ~ Py ~
4= 1(- ‘fm’ “f‘,,,“' d;z)’ ‘f(l.)f1+ T’ 7(1) ‘N* '.'2""" l-‘h) t 'f(o f{' ‘{D’

—~ - ~ _~ + -~ - ~ ~ -~
-9 ? ";y-rzf R/ Teares ‘fwnl "Fm.,*i.,,, ?nrr*"(of:’
YA "rufy |1 2l Gy ‘3)1—1“’?1)1—{ Yeres  Tearvay?

Frores Tnrre > T +7)

Since, in the general case, the considerations are completely analogous to

this example, we can formulate the following theorem:
Theorem 19: If j is located in the interval

¢y§}<“,ﬁ (8: 0,15 0 Sty =0 4 is no limit),

2+ (195)
the following is valid [see eq.(97)]:
r -~
- Y(Vrl) «© for v=o,%., v-1.,
[] lf ¥ (% for ey,
F w if =<
> = { ) ¥
(¢4 ] _ ) (196)
Tew (& for v gty sf,
Scvr ({4 for y= ?{-1,...’;,

(where the last row is of no interest); in addition, we have the following JAYNA
in the case j # iy

- - = b =s "\‘t- L,
?lu 1 t‘uﬂe y‘“n _'f‘"":._‘.y_’ 0, while r""j’f' {r)r )(‘?;)' (197)

127



where the function P(Yy)sgmiygmy OCCUTS only in the case of j - iy > 1. Here,
Y

we have

~

' ??y)(t) *'const. for ¥=1,..0,f . (198)
[Thié latter follows from eq.(95) or (975.]

Let us now consider an arbitrary normal solution x(t) of eq.(l), which we
will retain in what follows, and let us make statements &n the increment of its
derivatives xX**? (¢)(x = 0, 1, «.., n - 1). For this solution x(t), eqs.(19),
(31), (26), and (32) are valid. Here, it must be considered that, in eq.(31),
the indices V are arranged in a different manner, namely, first the resonance
indices, then the exceptional indices, and finally the principal case indices.
In order to retain our above notations, we will replace eq.(31) by
y wy = my, if V is the resonance index.

f
o> L o with (199)
e (BN wy < my, if v is the exceptional index

Y5 -

Instead of eq.(29), we must then write
o) = L g™ wien 44 o. (200)

Similarly, eq.(19) is rewritten as

x(t) = 23 7x(t). (201)
The order of increment of the investigated normal solution x(t) in eq.(32) will
be denoted by w so that, according to egs.(33) and (34) but using our new nota-
tion, the following is valid:

w = M w, > Max = Max m,=m.
(v:o,if...,?) i (vRes)' (iRes)' (202)

Independent of the investigations, made at the beginning of this Section,

on the matrix Qo(t), the following statement can be made directly on the basis

of theorem 3. [1L:

Theorem 20: For a definite normal solution x(t) of eg.(l), relative to
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the power order of x(t), x (t), eee, k0 (t), eee, X271 (t), we will obtain a

broken curve of the following type:

‘ Power orders

)
w-t ol

N

L { --t

Fig.:?.

In the case £ = 0, only the horizontal at the height w remains. [Corresponding
 patterns are obtained for all 'x(t) at v = 0, 1, ..., B from eg.(201) and the
pertaining derivatives.]

On the basis of the intuitive statements on the construction of the matrix
8 (t), stricter statements can be made. Let j be located in the interval (195).
According to egs.(23) and (25), we have the following for a resonance index or

for an exceptional index v:

0,6 = 4y T, (6) § Comst. (7= 0,1,...5 w#¥) (203)

[(£2°)

[see egs.(30) and (31)]. Consequently, in view of eq.(196), we have:
Theorem 21: For an index v < p, differing from vy, all Vx.(p')(t) for u =

=0, 1, eee, n — 1, have the same power order wy (see Fig.3). The same state-

‘ Power orders
1’(')

%

Fig.3
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ment applies also to the index V = vy in the case of j = iy, This theorem JATRS
has its necessary complement in the followingltheorem:

Theorem 22: If, in the case j # iy [seé eq.(195)], we have y < B, the
power orders of the derivatives Yx(t) successively decrease by 1, beginning

with wy, down to the order
1, = Min (3-1, %) (20L)

after which they remain constant and equal to wy - (j - iy) in the case of wy =

z j - iy while they will be equal to O in the case of wy < j - iy (see Fig.l,).

‘ Power orders

Fige.l

Proof: In eq.(199), according to egs.(23), (24), (25), and (30) we have /1L7

P Y
:!gf Wz = .(’_’L ‘gdvmw for pzorts
o (205)

-1 ¥ "‘1 X
“9..;«): g’ J..,y-,g_ T ea @t 1'?;0, exw 42 wa,:‘) :
Because of eq.(197), ‘
0u(t) = Const. for M= 0,1,...yd=i,~1. (206)
)
. . s Y y=uo
In the case of wy > j - iy, the coefficients Gu(t) of t in eq.(199)

are constant for b = 0, 1, «es, j - (iy * 1) according to eq.(197), with the
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w .
coefficient of t Y being different from zero because of eqg.(200)., Conversely,

. . wy’(J"iY)
the coefficient of t

is not constant. An application of theorem 3 to
theorem 20 will demonstrate the correctness of theorem 22 for the case in ques-
tion here.

In the case wy < j - iy, only the powers twv-u with b = 0, 1, ces, Wy <
< j - iy with constant coefficients will occur in eq.(199), where again the co-
efficient of th differs from zero. From this, the statement of theorem 22
follows also for this case.

By means of theorems 21 and 22, the theorem 20 can be made somewhat more
rigorous. Let us investigate a certain normal solution x(t) of eg.(l). Since,
according to eq.(48), we have ap-,(t) # 0, all derivatives x(kiﬁt) with k = j,
J*+1l, «ee, n — 1 have the same order of magnitude in accordance with theoreﬁ N
(see also the remark made there). Consequently, only the power orders for k =
=0, 1, +.., j remain to be discussed. Here, several cases must be differenti-

ated.

If we have the following in eq.(202) [see also eq.(195)]

w >ty (207)
or

w=wy ondsimultmeously § =iy, (208)
then the highest coefficient ¥ (t) in eqg.(32) is not constant and all deriva-
tives x(k)(t)(k =0, 1, ees, n — 1) have the same power order & (see theorem él).
Consequently, in Fig.2 we have £ = O. Figure 5 shows the power orders of the /118
derivatives of x(t) as a dotted line and those of 'x(t) as a dot~dash line*.

If
“-U‘, d ¢ iy, (209)

* A1l quantities “x(t), notlentered in the illustrations given below, yield
horizontals located below the dotted curve.
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then three additional cases must be differentiated.

a) An index Vv = r with r < § and r # v exists, for which

(210)

W= W W

» ¥

Also in this case, the quantity Yo (t) in eq.(32) is not constant so that we

again have £ = 0 in Fig.2. Now, Fig.6, in which "x(t) with its derivatives is

‘l Power orders
o)
f
W bemegrneerooqeseszesraness Sessen: sreeomesseessszaeg
rx_(l)( lf }-l 'w.'ﬁ
™
¥ N
\\.
\\ (7]
N UDif ity ]
( B B
) Q ¥ n1

Figos

plotted as a dashed line, illustrates the power orders of the derivatives.

b) If, in addition to eq.(209), the following applies for all indices v < §
differing from Yy /119
it I S 2 e (211)
’#r
Power orders
? w
x
w = peamtare wrsrarz s sy o
i AN PR
. \-
AN L
\[_ , -
’ A F 4 -1
Fig.6

then all Ya(t) for & = 0, 1, 4ss, £y = 1 in eqg.(32) are constant, whereas YLY(t)

is not constant. Consequently, we have in Fig.2 4 = 4y = Min (j - iy, wy); see

also eq.(204).
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c) If at least one index q exists so that, in addition to eq.(209), we also

UY> v2 0y s § » = ¥y v
=7 F) 1 (212)

then Wy - ®y is the smallest index for which ¥o(t) in eq.(32) is not constant.

i Power orders
(S %]
S
.,
e,
3
Noososnnzezznenesboeneznzeren:
’ fv
Figo 7
Povcr. orders
=y R
X,
(5] ,__._\j.}.-."_:'_'_ .-{f.‘.).................
1 \__j:::: “““““ VA
l e
- 4
¢ ey 4 -
Fig.8
This yields the pattern shown in Fig.8%.
Section 10. Construction of Solutions x(t) of Eg.(l) in which a /150

Given Derivative has the Minimal Order

We will now investigate how high the power order of a singular solution of
eq.(1) must be in order that, at given k (k =1, 2, ..., n - 1), the quantity
¥ (1) has a minimal power order.

For this, a complement to theorem 19 is required, whose correctness can be

read from the matrix examples of theorem 19 in the same manner as the proof of

# With respect to b) and c) see theorem 2, in Sect.lO.
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theorem 19 itself. This can be formulated as follows:

Theorem 23: In the matrix #°(t), we have [see egs.(160) and (191)]

f- if »<¥
) ("tm’ T "[l'ﬂ) = -~
___( D49 07 sy aim-,:, , ~‘fm Foner 22 "’l.'.;l )" (213)
(% .7 o I 4 IS vl =117 i pmet)y
(‘gvhd g4t | wd0F L, T elth Ty IS, y
L .
. . 2
if »=¥ and Jf“y 2
CIRIEDY =1 ;02;---;0'-" ";; ’?(’ 1»1"”17[5’3 *
" Tpneg) =(M 70 bt T T ’ (212)
i if vz ¥ and J.':“:y
) g w9 -(1""7 ";;y)+1"“) ?[YJ)J
agn ' vy T w (215)
/15
[_ if ¥=7 §24 s
o (216)
| ’ 7(1)4-;,—4'.1»1 22 "[v.‘l>"
if >
(‘f!(yp,‘“, ‘r[r.rJ_]) = (‘,(v) >t )‘,["J) ) (217)

In the cases (215), (216), and (217), we have [[v]] = [v]. For producing
the general proof, it should be stated that the zeros in egs.(213) and (21L) are
due to the permutation matrices B, while the negative terms in eq.(213) are due

A

to the superposition matrices %&M) . The matrices @U:A. have no effect at all on

% In the case v =Yy = 0, only (P((0y) s P(nyy+1s sees P((0))+3-1) = (11, Oz,
oo, 04) remains of eq.(ZlA) which means that, in the case j = 1, we only have
(p(coyy) = (11 )s The situation is similar for eq.(213).
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e =1
|

the matrices v&,.
First, let us repeat Fig.l with respect to the minimal order of the deriva-

tives VXFK)(t) [see eq.(19)], with k as the abscissa.

“ Power orders \ Power orders

._;"_.,
od

Y
A

|
t

0—‘}
B

o

%

¢

tl.

-

. }
] —
¥

}" =1

Fig.9(a) Fig.9(b)

With a minor modification of eq.(186), we can then define:

[152

= Mrax and z )’q m

- " »n > ')

> ( »= a,.-*;r) v X 7:)’*')"-‘1;---,? (218)
v Kee- > Rea -

where Y is defined by eq.(195). Then, the relations (185) apply, provided
that A is substituted by Y (see footnote on p.109); this had been taken into
considerat%on already in Fig.9. If we have
m - Mox (mg, my) =my, (219)

then, according to the relations (185) modified in this manner, the minimal
orders of all derivatives x**’(t) (k = 0, 1, «ve, n - 1) of a normal solution
x(t) of eq.(1) are constant and equal to my = A!. This constitutes no problem.

Then, only the case

»

m - Max (mg , my) =m, (220)
remains to be considered. I1f Y is the resonance index, ie.e., if Yy = 5, the )
power order of the derivative x(k)(t) of a normal solution is equal to the power

order my of Yx(k)(t) according to Fig.9b. Accordingly, the only case of interest
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is that in which Y represents the exceptional index, i.e.,
v <y- (221)
If k< j- i: + 1, then 9__x:“‘)(t) will yield the minimal power order of a normal
solution x(t) in accordance with Fig.9a. Information on the case
k>3 -3, (222)
is obtained by the following theorem:

Theorem 2,: If a given normal solution x(t) of eq.(1l) is resolved, under

the assumptions of egs.(195), (220), (221), (222) and in view of eq.(201), in

the following form

with
¥ w) éu)'f
- Z Y- = E 1 (¢)
e v= P " yry (w-! /YJ (220)
[see eq.(32)], in which case /15
w = Uy = m__f’ 1’(3"" ¢)__‘) = "ﬂ—; f(é——i-.7+7) (225)

[see eq.(150)] can be selected, then the constants vau_Y occurring in the ’x(t)
of eq.(22)) according to eq.(26) can be so modified that ¥ (t), ¥1(t), ...,
Yi.l(t) are constant while Y;(t) is not constant, with

1= =i (226)
On substituting this modified function x4 (t) in eq.(223), the quantity x,.(t)
can be so selected that the derivatives x‘*) (t) of w = wy from eq.(225), for

k = 0, will decrease with increasing k by 1 each time until the power order
M =Max(m$, mé). (227)

is reached. In the case i = M., the decrease of the power order proceeds to
v

the 4'0 derivative with £ according to eq.(226) while, in the case M = my = @

<

it proceeds to the U gerivative with
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1 =1 - (my - my),

(228)

Figures 10 and 11, in which x(t) from eg.(223) is shown as a dotted line,

illustrate the conditions stipulated in theorem 24:

eq.(226) and Fig.1l for the case £ of eq.(228).

Fig.10 for the case 4 of

2

‘} Power orders
wew §.
N, ¥, (]
u' - _..-' T T ST AT E e TR '—'?—'—T;‘:;r—'—:—: Pr—
-1 e ~1
- I
i )
(%) e e e e, e mm e . — -~ - ————— =
EX2] l r -
& =™ L-—----—--.———-.-———.——:-{ ————————————
v ¥
S R A R A
“;vr l-in!’-al order of x®
0 sisf--- i i - =L § n-1
LA WL T
Fig.10

4 Power orders

Proof:

First, it should be recalled that the summation indices ¥V + 1,

V + 2, vo., Y which occur in eg.(224) in addition to V must be exceptional in-
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dices, which means that, for these indices, the constants Vq-y in a normal

solution x(t) can be arbitrarily selected. Consequently, because of [see

eqs.(7L) and (150)]

U-'dy—frn 1’(2“ )<"" ‘f&'_‘ =”‘-6’

we can select eq.(224) as the upper limit of the sum. If, analogously to

eq.(225), we assume for v =V + 1, V + 2, ..., ¥ - 1,

W, = ™ t (“V{-‘l- -‘5 ) = ""’; f(‘:y+1' ‘:$+1)<my (229)
and take into consideration [see eq.(150)]
o= e 2o t (‘:m":) ’ (230)

then eq.(22/,) can be written in the form of

L4 “ T
fo-3 (30 £ ) (1)

Pl CYE S T

Y=y

[see eq.(199) or (31)] with [see egs.(26) or (24)]

., /155
"9,» * = E ! J,.-A ‘f,m) o~ ) (/.= oy, u_—t) ’
M=0

Y,
= :Eij
‘9“’ o, “ Tomn' T: s Tmen”

where the v?(v))(t) periodic with P and having a mean value zero can be selected .

(232)

[see (Bibl.l) eq.(103)]. A comparison of the t-powers in egs.(224) and (231),

using the notations

_ _ ¥ = ;, ‘:1.1, -, ¥-1
g = E-(574) por . (233)
will yield ) o Iz a-+,, .
XJ(“ = GJ t E- 0/‘,;;“.)’ I: O, lyeney Fm 4’7=(,..,.dy, (23LL)
y=r

which can be used orly up to & = 4, in which case any summands with Wyg§ not de-
fined in ¢q.(233) must be omitted. It must be noted here that the quantities
(225) and (229) are the highest occurring exponents of t at Y6,(t) or "85 (t).
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In addition to eq.(206), we will also need the following relation which

has been obtained by means of eq.(21) from eq.(232):

V—'ur
¥
0 = Z /“(1{_)‘ ‘fmﬂm-'- JJ‘
=1

{) lf "’:': >0
vith = d-4,..., v (235)

~

-1, if ™g =0

-
¥

In the case ms = 0, the second sum of the second formula in the system (232)
will also occur in eq.(235) for 8§ = 1, which must be specifically taken into
consideration later for egs.(237), (241), (2,3), and (244)s For & =0, 1, ...,
j - iy =1, eq.(206) is contained in eg.(235) since in that case, according to

eq.(235), the quantity b - r becomes negative, meaning that the sum does

Y-1, &
not occur in eq.(235). This formula is applicable no matter whether j = iy
or j # iy, as can be confirmed by means of egs.(21}) and (215). /156

In accordance with eg.(232), we obtain for the remaining summands in

eq.(23L), i.e., for

y-: » 7*1,_.,“1_1) (236)
by means of eq.(213),
“Sr % ~
- — 7 ©)
v m 2 lorrea T
O™ "
=
r Sy 3, ) =
ALy e A iy s~ (Ly‘.. %)
(237)
& ” '] ® ol ” g @
"Z; P (AR t ;___o /:-1,;4 (YA
Since, according to eq.(233), we have
§2 402 (238)
the sum doeé not occur in eq.(23h) for the case that
§=0,1,..0,5 - ig-T1> (239)
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so that here ¥ (t) according to eq.(235) [resp. eq.(206)] is constant”™. Conse-

quently, we now need consider only

§=3 - igs d =iyt Taeensl (240)

Next, we calculate, in accordance with egs.(234), (235), and (237),

-1

/"V F) v L™ L g
XJ{»: 5 Y N 7“,)”_“’ + JJ‘*

'] /LX’J
):: 5 : ¥ e =y F ®
+ ;‘*1(‘2{ J/‘ n Tunen “’1’4 A L
=3\ hee ’ (241)
3',[ + ¥-1 v vwd’ -7 <-f )t s
=4 T=, é /ty:—};, (v+1)+A
Y= ¥ h=o

-7 .3‘1 ‘2}’ (€.
+ % A5 a3 (r

Then, we select the arbitrary Vd_r such that the parentheses vanish, i.e.,
/157

= ‘:[ - sy =Y, P4y, Y-
Lper T T A (21.2)

Yt1

AL

where only eq.(27) for v = v must be taken into consideration. Then, the only

remaining terms of eq.(241) are

M50 = ~
er-_— ylf t “Sﬁ' "/-5_1,;)& ‘f(,’_:) G (213)
Here, the sum occurs only if [see eq.(231)]
Fonp T 4) Zo
i.e., because of eq.(226), if
| §37

Consequently, according to eq.(2,1), the quantities Yo, Y1, ees, Yy-1 are con-

stant while

S8, t 54§
K= e v @ (211

is not constant [see eq.(198)]. In view of theorem 3 (or theorem 20) this

% At j = iy, these terms do not occur.
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proves theorem 2/, under the additional stipulati&% that x¥*(t) in eg.{223) con-
tains no t-powers higher than t", with M from eq.(227). For this, it must first
be established that no vV of the series vV + 1, eee, A can be a resonance index
and thus need not furnish any t-power. For such a v, according to egs.(7.4)

and (150), we would have

~ >R, >R 14r<2) 3 2 1.(4'5“—4‘5}: — s

which constitutes a contradiction to eq.(220). For the resonance indices of the
series A + 1, ..., P, according to the definition in Section L4, the highest in-
dex has the greatest my = fiy which means that, according to eq.(220), we must
have my < mz. Here, it should be noted that the case m = m§j = my in eq.(220)
had been taken care of already when treating eq.(219). This will immediately
produce the bound (227) since the indices v > § furnish only periodic components
to a normal solution x(t) of eq.(1).

As an application to theorem 24, we can use the example on p.l09 with /158
j =Y, in which case we can assume v = 0, 2, J, as resonance indices. We here

have

A Y]

§=3%,4,=5, 7=2,m_=7,0_=5, i_= 3;
¥ ¥ b y
so that, according to eg.(225), it can be computed that
)"‘=U3=5+(8—3)=10
and, according to eq.(226)
1=8-3=5,

In Fig.1l2, the dotted line indicates the power order of the xth derivative
of the solution x(t) according to theorem 2/, while the solid line shows the
minimal power order according to Fig.%a; the dot-dash line gives ?x(t). This
latter line generally also is valid for the solution (223) with w from eq.(225),

i.e., for @ = 10, and can drop below the value mg = 7 only at a special selec-

tion of the constants Yd,; for the selection (24,2), this can drop to the minimal
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order of M = 5.

So as to obtain an example also for the case (228), our above statements

are modified such that we lower ms = 6 and add v = 5 as a resonance index to

§ Power orders

\
&N 300
My 1} = 7 —-—.}:--_——-___ .__—.-_-:.:‘_‘_‘._-57?.—_-:._—_‘-_::-7-]
ad N X(., ........................
L B .

nininal order of a [

A
’ J-L;i Fiy=C i=t. n1.
Fig.l2
l Power orders
@ =W =]
i Yaiad 5,%
'5:§ 3’“)
“::‘ ", _._-2-?:?;,3,—:7—:-_:?—'——-—;-——--'1.;7—5-——_:=;——=
mE™ & 2 v e esareecam mrev e e s et e e s s e e e »oed
s c‘: -5 minimal order of 0
4
[4 L N4 =2 w1
¥ 's
v =0, 2, and 4. We now have again /159
W .w =105 1 =5,
;-Z,m_=7,ﬁ=5, vhereas m = B = m. =m. = 6
v H 14 2 5 5

Consequently, we have in eq.(227),

!
()]

M = Max (5;6) =
and, according to eq.(228),

1" =5~ (6~-5)=1
1,2



The new conditions are illustrated in Fig.l3.

Section 11. Method for the Formation of Examples /160

Theorem 25: The functions
o ¢

Iu(t) = el (%) for pm= 1,...,0, (245)
where the @u(t) are n-times continuously differentiable and periodic with the
period P, form a fundamental system of a differential equation of the nth order
having coefficients periodic with P, provided that the Wronski determinant of
the functions y1, eeo, yun differs from zero for each value of t within the in-
terval O € t < P, Here, the matrix ® =9 ' (0)0(P) contains only elementary
componients of the order 1.

Proof: Obviously, the functions yu(t) satisfy the differential equation

of the nth order:

3, e 9 2 ;“t?n
PUPLRI Y B LY (AU L4
(246)

« t7 2 ' =0 -
P AT Sy (X RS A2 4 B e

' «t ~1 n. tf w n-y =,
J""»e'é‘t+(?)“.'ﬁ—+": )..,;“‘ (t,v(m Ot

If the exponential functions are canceled from the columns, a differential equa-
tion with coefficients periodic with P is obtained, in which case the factor of
the highest derivative which, except for the sign, coincides with the Wronski
determinant of the functions y1, eesy, ¥n, according to definition is a continu-
ous function differing from zero., In addition, the following is valid for the

fundamental system:

-4’ R N
1g(t)- PR MR 3 =

Dmet)  (me® LS
},, 132 rrdm

(217)
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-/‘;g-f- ' 2ocre P » :'t
= E' ! “ " .l: - ‘f‘*(" c&t » (214.7)
w-f -1 a- {n~2) ° w 0 T, - s
x, "'!'f(.tv?-(’ lf,lf“‘tf PR & 1,‘* (‘,—)«‘ ’t..f"'f‘{:‘ ) c‘s"
Pkl (161
eag,?
)= . R
1gevrr=10n . (218)
e
[.4
From this, it follows that [see (Bibl.l), eq.(10)]
x P
e
¥ = &’
' &P (2LL9)
cﬂ

Consequently, the matrix @ consists of elementary components of the order 1.

Theorem 26: The functions

ot
}’ tr= € 1’ )

4w = e‘"(t‘t‘m +qw)
_ mbgope
}.zm_ € (T ¥, 0+ t‘j;(bf‘f,(l’)) (250)

t‘h—"

) t tq—z
{t)
J_ﬂ{r) L <(_.._1” ‘g f ey

AR B ‘f,JU) ’

where the ©3(t), ee., O (t), are m-times continuously differentiable functions
with the period P, form a fundamental system of a differential equation of the
mth order having coefficients periodic with P, provided that the Wronski deter—
minant of the functions y1(t), eee, Ya(t) differs from zero for each value of t
within the interval O € t € P. The corresponding matrix §§ consists of exactly
one elementary component of the order m.

Proof: The differential equation of the mth order, which is analogous to

eq.(2L6), after reducing by'e.at and introducing the operator
d (251)



as well as the notation

~T mEul -ym 1,

.,- ll‘)- ( ) w)
aed -1 (D"") ‘i_{_” Jor

Ac“,- . ™

(252)

- summands in which the index © < O must be replaced by O - can be written in

the following form:

e -y
_'}’. o .?‘ -
t 22!

<ot

[ Y]
OO SadlU W Sl S Y

(m-42! £ b~- l)'
LR -

- -1
-4 A v, 1,0 (t"’:”. .3’1(: n'"

P3N

4 '-"'1“",1‘1*‘%("

}.; 240t )14""5;'

P """ 2 -2

9 8
‘__‘_“, 1 pmegnt 9L b Bt

wn=1) s ¢
}f Y Fn J’ f)

- hadt
et t
3 ,."mfl,f’ta’- 1,1 "”.;Q-}Z’ 2 %«n,{tm (VY

(vn-*l){

3
2t

20 (253)

v\i':j

The first row is obtained directly, while the other rows are obtained by com~

plete induction with reference to the row index.

If the power factors are

eliminated by forming column combinations, a differential equation having co-

efficients periodic with P will be obtained.

Again, the factor of the highest

derivative y(“) (t), except for the sign, is equal to the Wronski determinant of

the functions y1(t), eee, yu(t), i.e., is continuous and different from zero.

In addition, analogous to eq.(2/,7), we have

/j“ :}’ 2 b J’-u, T
' [
31 ’ 1‘ > t2 J‘u& -
)= M [}
-lg J‘: > ” ? ’ ‘J""
: . L))
3R d
]
P
~
- -1 -~
[ ¢
3t td b h ted, 13, o T TR Al 2 S
t I ¢ 4 m—
a? Eda ¥y m "21."‘;2.’ %3 ° ""—.‘iff““r{
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t! ot
J’-' ’t}”*%l n %'+t’gl f%, ? )(‘:-nl '!’1 t +';m >
st el
SR A > B _,M,.Z_ J»Z.., ;(.i__"!.z,‘,,* +L, ,j

(25&)

/163



o (E4P)

19(¢+n-¢

-~ m-1

et e)
R LA Ay

(m 3

)™ 4
,?‘1’(""")0’*»’ l"‘l%‘w"l‘l* ’;‘n\'

2 22

L™ g
ALt s A2 R ‘(,:%‘;4 tt S

. : w1

2, D2 1L et T

(om—nr! ™
-t

S o

F{ Cm-171

P -t

[ Y

Gttda

~

P

From this, again in accordance with another paper [(Bibl.l), eq.(10)], it

follows that

? ‘Vﬂ‘?
=e

Consequently, the matrix $ consists of a single elementary component of the

order m.

-

N il
F A4 (m-1)!
?

. p""l -
(23]

From this, we directly obtain the following theorem:

Theorem 27:

(256)

[16),

Theorem 25 for 4 = 1 represents a special case of theorem 26 for m = 1,

If, in forming the differential equation (246) or eq.(253)

from several furction systems of the type of eg.(250), i.e., for example,

b LD T ’""}mfm‘ﬂ id., ‘Jrun""’}u,, -1 Sy }(s)'}rnﬂ""";(sn"}-t,

a differential eguation of the order

is obtained, with continuous coefficients P, and one matrix
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¥
¥ #
x| (257)
where $y is of the order my.
Section 12. Examples /165

Example 1: In accordance with theorem 26, withm = 2 and @ = 0, we start

from the fundamental system

§(1)=sint,§[1]-t e« sint - 3 cost + 1, (258)
These functions are solutions of the differential equation [see eqg.(253) or the
formula analogous to eq.(246)]

2 A 2 sint cost + sint »
L y = yll - yl +
m 3 4+ sin’t - cos t (259)

4+coszt A
t y’°1
3 + 8in’t - cos t

in which the denominator is positive. The corresponding solution matrix:ﬁ(t)

reads f
~ o 2 sint|1-3 cost| (1 ¢ (260)
£ I L R e R | e
cost {4 sint 0!1
with
o o 1
® - . (261)
0o o

The transposed reciprocal matrix 8(t) = (ﬁ\_l(t))T will then be

AT

A = -R+ & 1 -
= £ - -
_ (3(” 2+ ) ¢ 2+sin t-cost

(262)
4 sint - cost 1 (o}
: ~1+3 cos t sint -t 1 ’
The elements of the last row
A -t_sint - 1+3 cost ~ sint
z = and 2 =
& 3+sin2t - cos t 03 3+sin t-cost (263)
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form a fundamental system for the homogeneous differential equation adjoint /166

to eq.(259): - , 2
1 2n+(2 sint gost + sint 2)+ 4 + cos®t g . (261,)
3 + 8in"t - cost

3+sin2t-c ost .

Next, we consider the solutions %(t) of the inhomogeneous differential equation

-  si ot A 2
LE]-‘ a0 _ 2 sint gost + gint TN 4 + cos™t J?=f(t) (265)
3 + 8int - cost 3+sin t-cost
with
£f(t) =3 + sin’t - cost. (266)

Since we have a solution z;1;, periodic with P, we can form the integral

T T

.f ;[ﬂ(t) £(t)dt = j sintdt = o (267)

and find that, for the inhomogeneous differential equation (265), the exception-
al case is present. Then, the general solution %(t) is obtained in accordance

with the variational method for the constants [see eq.(18)], as follows:

x(t) = - t sint +(§ + % costt - cost) +

(268)

1 .
+t * c, sint + 1co(1-3 cost) + qc,' sint,

with the derivative

X'(t) = - t cost ~ sinst + t * 1c° cost +

1 . ; 1
+C, " 4sint + cq cost.

ir lco = 1 is selected, then %(t) is periodic with 27 at arbitrary lcl. How-
ever, if co # 1, the power order of %X(t) will be fi = 1. Since the factor of t
in %(t) is a nonconstant function, periodic with 27, also the derivative X (t)

has the same power order m =m =1 (see theorem 3, resp. theorem 20).

We then turn to the differential equation /167
Gy gy G0 P 0
Lldgr - 25t ettt sret ik
; Y rarsral i Bt e il (269)

18



at j = 1 which is transformed, with x'’’ = %, into the reduced differential
equation (265). First, we construct a fundamental solution matrix ?(t), accord-
ing to the method described in Section 5, for the differential equation homo-
geneous to eq.(269). By selecting successively j = 1, 2, 3, we obtain the solu-

tion matrices [see egs.(108), (109), (114)]

1 |-ot,-2et 4l ¢
= lE(n:ém-gttm rl r 1 11: 4 (270)
P W I L - CE1
[
4 o] -aint st 1 tfe i—‘
. 1 |- ot ;-2 aat 1lo ¢t
}=z||ﬂ.lt)=§'f)~@(f>= -~ PP e (271)
At M
wvith 'g,f“=c and R = r o; ’
1 o o et s © 1 ¢ .é. . %—
. P —nimt y Gl 1:‘. . _5_17
i=3" ]ﬂm: éu»ﬁ,m: o -6t so2t 1le t|s
p 1 8 (272)
r $ r .
ﬁ o 1s)® 0o
with b{;)=e ¢ and k____ .: :;
r |-
Here, according to eq.(260), we have /168
-t 1-3 ot
3 - | et 4ot (273)

Next, we determine the matrix € for the transformation [see eq.(123)]

do - I"j [,
which brings the matrix f to the Jordan normal form 8°. This then yields [see

1,9



egs.(148), (137), (146), (139)]
jua] Lo L= LB =

(274)
111 1
= 1 -111 ?
1 1
IO WL A AN A
Il ) 1 © (275)
1 1 ° 1
- 1 o 1 . o
- 11 E1E e P ’
1 1 1
. -~ ~ x x x _
e=3ﬂ1=11-4.[3=,(; 51...(; ZQ[.; LC,- (276)
4 1 1 01
1 1 ° 1 1 e
= 1]1 o 1 { 1 e { 1
1 1 1 1
1 1 1 1J

We use this for calculating the new fundamental systems [see egs.(124) and /169

(192)] -ﬁ’o(t) - éo(t) ‘e &Rt

wt 1-covt 2t 1
o
}',1I 1£,(t)= —mint| it -3t 1 ] (277)

~ toot | oot 4 o t

ot {1 -3t Coot 4
_goint t ¢t
. - ot |0 1-col Lot~ 1 Lt
Feg ﬁ(u: ¢
—eint] o ot 1-36+t 1 ¢ ’ (278)
—ot]o et faint 1
-t i ° ot R BT
, o 1 - olat cont 1 ¢ i( ﬁ
i o ain t T
e = - _gain £
afigfos] |0 o e el e gl (279)
—nmt] o ° ot 1-3 ot 1 ¢
@ t]l 0 o  aet  yaint 1
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In eq.(277), it must also be noted that

=1, 3; =1, i.eey, jJ =11, ¥ = 1 [see eq.(195)]

We read from this:
=g medat.

lfL—d J‘f "*'f‘”"'dff"'t) ((u)ﬂ m+t

R A

This result coincides with theorems 19 and 23. Analogously, the following is

valid with respect to eq.(278):
j=2sj>i1’Y=1

Equation (278) indicates that
RN AN [170

= =4 = =g - ¢ = 2,
‘fm, T zxwé—"a fou T -t f oty mw s fon
With respect to eq.(279),

This result also coincides with theorems 19 and 23.

we have
}'.3 ,“>¢;:1,Y=1 ’

=-:f, e« o=t *fn-d.,

Yecor o
= =4, =0, . T = af d'd =
Tan G P bvnet 7 wa;-i; B Yo 4 Tanes "'ron

which again coincides with theorems 19 and 23.

The reciprocal transposed matrices, conjugate with eqs.(277) - (279),

T () )T e o e

will then read
ETR P MHoilt_coe | o |4
Lamtoet —grint]| L0t oot |—of 1
}:1"3“)=_.___“ N e o 9 (280)
Ftoalt-wt]| 3tertt~yort [T+ togut|an s
") [+
° o t-cot ° .
- 2 .2 9
3pet-cot ° 3feist-cot |
Tt | e wt| 1430 x 281
¥ zlg“’ Jpanit-gat | Lalat oot —gamt 1#!4—"} 2oinbamt |~ -t 1 » ( )
o - g,
34 ol — yeuot |-aintiramtint] Ttert-ot et ¢ e 1
[
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. > 1
i Qo= 5
o 3ailt -t ° ° .
. ° 3+p'-‘£‘ ~eot o .
14t ot ° ° spalt-eot 0
poutent -paiot] —paintost | 1434wt 2aitnt |-t
dtert-guct | Gt -3t |-t $2amtut| tterloot |-t

1
-t 1

‘2
v -t 1
-t 1

-£
2

o>
o

N

From this, one can read from the last row

T ——3——— (% - 4cost + 3 cos2t) for j=1,2,3, (283)

3+8in"t-cost

i.e., independent of j in accordance with the proof of theorem 1l). The corre-

sponding periodic solution z;ri13), in all three cases, will be (see theorem 13)

sin t
o

[ =
z[l’lJJ' ZP1° 3 + 8in°t - cos t (28l+)

Naturally, the function zpgfoj;3 can also be calculated in accordance with the

formula (163):
“r3T (Y}ﬂ o 1y J'-TDJ t *(')) - (285)

In accordance with the last row of the matrix ¥ [see eq.(262)], we have the

functions A -1+ 3 cost . f’) sint
E 3 an =
' R -]
M 3+ 31n2t - cost ol 3+9in“t-cost

and, in accordance with the j'I power row of the matrix @ [see egs.(270)-(272)],

the functions

~ ~

j ‘f(,') =-cost and .j‘f[‘lf —2.sint.
As readily verified, this will also yield eq.(283).
In addition, it is possible to read from the representation of egs.(277) /172
to (279) resp. egqs.(280) - (282), the orders my of the elementary components,

resulting in the scheme
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1 1 (286)

4 g+

which coincides accurately with the scheme of the minimal orders for the reso-
nance subcase [see eq.(185)].

For our special case (266), the quantity Vv = 1 in accordance with eq.(267)
is the exceptional index. Conversely, a computation of the integral [ see
eq.(283)] o

f 2lcog @ Fw0dt = %7 f o0, (287)

[ ]
shows that v = 0 is a resonance index.
Naturally, instead of eq.(287) one can also calculate (see theorem 18) the

integral
4l 27

j ZD:’-B @ Feprde =‘f Reordt = Fir #0

by means of the solution

%t = g - 4 cost + % coslt JC1A"’tsce eq-(268)

(288)

with 1C = 1)
(o)

of eq.(265), periodic with 2m. In this manner, the following sequence of values
is obtained for the overall minimal power orders of the solutions x(t) for j =

=0, 1, 2, 3, etc.:
m=n_=0,1,1,1, etc (289)

o

The general solution x(t) of eq.(269) can be determined in two different ways:
either by a successive integration, starting from %(t), to eq.(288) or by /173
constructing a particular solution in accordance with the method of variation of
the constants on eq.(269) and adding the general solution of the conjugate homo-
geneous differential equation which must be taken from the matrix ﬁ)(t) [see

eqs.(277) - (279)1.
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By successive integration of eq.(268) (j = 1, 2, 3), we obtain the solutions

— .
= 1' x(t) = ¢ (2 + cost) - (2 sint —% sin2t) +

1 1 1
t e, (1 - cost) + (=2 ¢, sint - c, cost + a,‘);

2
j = 2" x(t) = %+ 55 + ¢ sint + (3 cost —-} cos2t) +

<

n

ET 100 + t;(a,I - 1c° sint) + (1co cost - 1c1 sint+a2)1 (290)
% 1
=3 x(t)-g-z-l--tcost+(asint-;]-ssinzt)+

3T S0 * g—r a, + 1;("'co cost + ay) + (1c1cost + e3)-

The variational method for the constants, using the argument

x(8) = %x() + 'x(t) (291)
and [see eq.(20)]
vl 1
= * f = 0,1 292
x(t) E_ 20 / 5ft) £(6)at for ¥= o (292)
)
would yield
‘xiet) = mt(-}t- 4 olnt 1,1_ salt 4 .C1) »
1)) = %t(1—‘4’t) 1(% ol mt—z»o:»i'_‘_;_,..; et q,.t)"
2=t 167, (1-ent) = 27 sint 4 %, (1-cnt), (293)

X6 = t(§+ wol) ~ (goint — 4 n22) 4

+ b1 (1-6et) 1-(—: e, st - (e~ %, )emt + ’c,),

which coincides with the first equation of the system (290) when taking into /17!

. . 1 [e] .
consideration that lco, c1, and c1, Or a3 are arbitrary constants. Analog-

ously, we obtain for
°x(t) = sint (£ t - 4 sint + 7 sin2t + %),

2
1x(t) = 2(5—1- - t sint) + (3 cost ~ % cos2t +
» ’ (291)

; 1 s . < .
451nt—l—‘_51nt-51n2t)+2— c, +

t(1c - '¢_ sint) + (100 cost -

2



1 1
c, sint + cz),

tz 1
x(t) = g * 37T+t sint + (3 cost - B cos2t)

2 1 1 1
. 5_ . G+t (cy = c sint) +

1

1 o 1
c, cost - ( c4 - c1) sint + ‘e,
and for

o

" %% (t) = - cost (g t - 4 sint + % sin2t + “c,),

£ .
1.(t) = g(gT + t cost) + 4 sint ~

%g sin2t + & s8in2t cost +
18 1. 82 .
°o(§T + t cost) + °1(2T + cost) +
33 (295)

1 1
cat + c3 ’

3 .
x(t) = g . %T - t cost + (4 sint - %3 sin2t) +

n

34

ot

10
T ©1

<t

+ t(1c° cost + 1°2) +

+
cO

N
(%)

1 ) 1
('ey - c1) cost + cx.

Again, we obtain coincidence with the two last relations of the system (290). /175
Solutions with the indicated minimal order (289) are readily constructed

[see egs.(293) ~ (295)]:

For j = O, we only must put (as already known) ' = 1 in eq.(268). T
For j = 1, the selection of constants in eq.(290) is arbitrarye. ?
For j = 2, we put lco = % while the other constants are arbitrary.

For j = 3, we put lco = - -g— and ‘e = 0, while the other constantéJ

are arbitrary.

If we start from a fixed solution x(t), power orders are obtained for the
sequence of the functions x(t), x (t), x"(t), x"'(t), etc., whose patterns can

be determined in accordance with eq.(290). Let us consider the case j = 3 and

155



select a definitely determined x(t), resulting in the power orders of the deriv-

atives x'¥? (t) for four different cases as shown in Figs.ll - 17 [see eq.(295)].

In all these cases, the following is valid:

j=3,41 =1,y =1 [see eq.(195)]

1

Ww =m =1 [V

Case I: ‘¢ +%7‘O.

Here, we have wp = 3, 4y = j - iy = 2 [see egs.(204) and (296)].

taining pattern corresponds to Fig.7.

Power orders

(}
b
O

AN

B2 LTI TRPRers

, T N
o 1 2§ =y

Fig.l)

Case II: ‘oo + —g— =0, but ey # O.

Here, we have w; = 2, 4y = 2.

The following pattern corresponds to Fig.8:

Power orders

Fig.1l5

Case III: ‘oo + —g— =0, 'e1 =0, and ‘¢, arbitrary.

0 resonance index, see eq.(287)]

(296)

The per-

/176

Here, we have w; =1, 4y = 4; = Min (j - i1, w;) = Min. (2, 1) = 1 [see

egs.(20,) and (296)].
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In accordance with Fig.6, we obtain here

Power orders

w

“’l“; IU. 2 = ua.-;:_-.r.:..-::;‘-.;)-.:.u'
N\ T tD

’ 1 2 i

LY

Fig.1l6
Case IV: ‘¢ -1 = 0, and the remaining c arbitrary, /177

Here, we have
U‘/"‘:l = 3, 1Y= J - ig‘ 2,
T- o (ee €q(220)), i_= i, = o (sce €a(152)),
v

= mgz% =m, = 1 (see C(I-(de))v (297)

1=j-4i_=3-02=3 (see €q-(226)).

L ki

The constant lQ) is so selected that [see eq.(29l)] the coefficient of t van-

ishes in the sum x"'(t) = Oxmt(t) + *xn1(t) (see theorem 21,).

Power orders

w=u1=3
™,
N,

N )

oy e ¥ T e ®
S e ® £
’ 12 3y wisg
Fig.l7

See also Fig.lO.
In this case, the condition (242) must be satisfied. We will check this

condition; the only remaining item is

d, = % . (298)



where 'dy, is the coefficient of the highest power in 'x [see egs.(122) resp.
(199) and (26)1, i.e., —g— + *¢o according to eq.(295), whereas °d, is the con-
stant factor of the highest power in ox(t), i.e., equal to -%— according to
eg.(295). In accordance with eq.(203) resp. (26), the coefficient of °x(t) can
be computed [see eq.(279)]:

70,(8) = %0,(8) = %y Fgof®) = Odp (= cost),

so that, necessarily, Odb = —%— . Consequently, the condition (298) reads as

follows: 5 7
2+l = — which yields ' = 1 /178
2

as had been assumed above, for the case IV.

The four traces from Figs.l) - 17 are compiled in Fig.l8, together with

the minimal solution of Fig.l8 (the latter is shown as a solid line).

\ Power orders

e 1 z j-t) Labd 4

Fig.1l8

It is readily demonstrated that all possible cases are covered by the

cases I - IV. No solution x(t) exists which, simultaneously with all three

derivatives x' (t), x"(t), and x"*(t), would have the corresponding minimal

order, as represented in Fig.l8 by the solid line.

As a second example, we will consider the differential equation

(33D, g cozgnt (342, (5+1),

(299)

1552285 <) L re) (530
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with two different right-hand sides:

(a) f(t) = sint (2 sint -~ 3),
(b) £(t) = (sint - 1) (2 sint - 3).

The general solution of the inhomogeneous reduced differential equation (5 = 0)

has the following form: R(t) « % (t) + 101 3(1)(“ . 1c° 3[11(") .

$70q T2)(®
with

[ Fay® = Ty(6) = 3 cost,
Trn®) = v« Ty (0 « Ty (o) -

=t « % L
=t * 3y cost + (3 sint + 1),

§(2>(t) = :i(z)(t) = sint.

According to theorems 25 - 27, as already expressed in the notation,

~
m

" 2, 62 =1, i, = 1, i, is nonexistent,

a(-(zso,

1
A A 1 A
"f(,') - %cost, "[’IJ' 3 sint + 1, 7(2) = sint.
Further, for the case (a) we calculate
J'E‘(t) = t(g sint - cost) +

1-(-;- sint + 3 cost + % sint cost - 3)

and, for the case (b), = 2
x (t) = 5~ cost + ¢ (sint - cost + 3) +

1-(37} cost - g sint + % sint cost - 3).

A o T * . .
By means of the matrix 3(t) = (2) l(t)) , the following is obtained:

oy "ttt Yt -t s

3(3 cost_~- sint cost) -
t 2 sint - 3 *

3=t e =3
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1 + 3 sint + cosat .

[?EEJ”EZJ‘ 2 sint - 3

For the case (a), this will yield

C o o
! zm(t) £(t)dt = - ! 3. _s:int at = o .'.

J ¥ = 1 exceptional index

and tw : (306)

i z (t)r(t)dt = f sint (143 sint + coszt')dt =
J i) H ’

° =3r# 0, ¥= 2 resonance index

and, for the case (b),

T
R . A
,[ zm(t)f(t)dt = —3-] (sint~ 1)dt =
o
o .
=6T# 0, ¥= 1 resonance index
J and . o (307)
I ‘(sint - 1)(143 sint + cosZt)dt =

o

l‘ﬂ'; .
J‘ I:!_."(*.:)f(t)dt: =
.

¥= 2 exceptional index

=20,

The solution zrroy; (t) is calculated according to the formula (163):

z[[OJ_](t) == (Ya) j'fm T Yeug j‘f[q T i,; 5_?(1) T i‘l)) - (308)

The still to be determined functions ,:5(1) R J::P’[ 11 » 3?5(2) are defined as func- /181

tions with zero mean value from the system of differential equations (97) which,

in our case, has the following appearance:

-

! -

- = -
= =41

™ Fen v 4, Si«t

' ~
%1 = % -1 F e g -F
(%3] rn Ten g T7 (0} (309)
! x !
) = ‘f") ) ‘;’) = =t

As solutions, we obtain

o~

fin = % sint, :f'[,.u= o, "(2)= - cost,
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On substituting this, together with eq.(305), into eq.(308), we obtain

2. w - €98t -~ 3 sint cost
[1&)] 2 sint - 3 .

In addition, according to egs.(162) and (305), we have

P - -
2p” 2™ Ytn® Zsint = 3

14+ % sint + coszt
2 sint - 3

as well as

s2my = %23 = Va3 -

In both cases (a) and (b), the exceptional case exists for v = O.

(310)

(311)

(312)

Thus, the scheme of the minimal orders, according to eq.(185), will be

m, [} 1 1 1 1 1
m, 2 2 3 4 5 J o+ 1
m, 1 1 | 1 1 1

From this, in the case (a), we obtain for j = O, 1, 2, 3, ... the sequence

of minimal orders [see eq.(184)]:
m=m, = 13937473000 o
In the case (b), we obtain accordingly
n = mq - 2'293'q"ooo .
Then, we determine the general solution x(t) for j = 4, yielding:

In the case (a):

4
x(t) = - EE%— + t(% sint - cost) + (1% sint +

4 3 2
4 9cos t + E%rsinZt) + 1co &T + a, %T + 8, ET +
*t(qc . 3 cost + a )+ (- Te sint + e 3 cost +
o " % 3 o 13

2 .
4 ¢, sint + 34)'

In the case (b):
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4 2
x(t)-3%?-5‘%+Z—t-cost+t(-Bsint-cost)+

4 3
2 < t t
1—(% sint - 1; cost + j—g sin2t) + "c,.I T * 29 3T +
2
$as gT +t (1°1 . g-cost + 35) + (-'lc,1 sint +

+1c2' -;— cost + 2co sint + 34).

In the case (a), four subcases must be differentiated:

Te 3% o0,

co"}'os but a1f O,
c, -3 =a, =0, but ayfo,

o -3 =a, =a, = o,

from which the following curves for the power orders, analogous to Fig.1l8, are

obtained:

l Power orders @2

™ -

¢ 1 L 3 424 5 mimf

Fig.19

In the case (b) only one possible case exists with arbitrary constants,

yielding the pattern shown in Fig.20:

Power orders

!




It should be mentioned, in addition, that it would not have been necessary
in the above examples to check the index v = 0 as to resonance since the minimal
order mg can never be greater than m; or mp.

Example 3: As the third example, let us consider the differential equation

x(3+3)_ 4 + 8in2t + 2 cos2t _(J+2)

sinlt + 4
6 + 2 cos2t -~ gin2t (;j+1) 8in2t - 6 _(3) =£(t)(J ) (315)
t 5inot 4+ & * Sindt v % * 30
with the right~hand sides /181

(c) f£(t) = cost (4 + 2 sint cost),
(@) f(t) = (4 + 2 sint cost).

The general solution of the inhomogeneous reduced differential equation has the

following form:

A -~ 16
%(t) = o) 1c2 Fy(e) + Te, Yo B+ 2eq Te2y(®) (316)
with "
§(1)(t) = ‘f(q)(t) = cost
§[q](t) =t ‘?(1)(t) +?[1J(t) =tcost + sint (317)
5.06) = T,(6) -« &b - eF,
where, in the case (c),
2% - :I% e® - % t2 cost - t (2 cost + % sint) +
1’(%—% sint - g% cost - % sin5t ~ (318)
'Zg coth - % sint coszt - g— sin‘?t cost)
and, in the case (d),
;*(t) = g e~ t cost + (~sint + ;l sin2t -
_?5 cos2t - 6in® t - g-) (319)

Thus, we have fy = 2, fic = 1 in which case, for v = 2, the principal case

1
is present; for v = 1, no i, exists. For the matrix 3(t) = H(t) we obtain
3 & ]
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fad L A _ . sint + cost +
'rz('l)= - t‘f[1]+ Yy = t 432 sint cost
sint - 2 cost
J 442 sint cost (320)
A
2[1]="?[1]= - sint + cost
4+ 2 sint cost °*
~
22 = ‘rz et = 1.+ cosit . et .
4 + 2 sint cost
In the case (c), we calculate /185
v 2T
J QL'D(t) £f(t)dt = - J (sint + cost) cost dt =
°
0
=- T § o, ¥= 1 resonance index (321)
and, in the case (d),
o o
A
J zA[,]J(t) £(t)dt = —j (sint + cost)dt = o,
°
o Y= 1 exceptional index (322)

For the orders of the elementary components with variable j, we obtain the scheme

j=o0 1 l 2 3 J g__o
mg o 1 2 3 J
m, 2 2 2 2 2
m, 1 1]

In the case (c), we obtain v = 1 as the resonance index. For establishing that
v = 0 is the exceptional index, it is only necessary to determine z(;oyj which,
according to eq.(163), yields

2 . =2 + 2 sint cost
19)]] 4 + 2 sint cost

which means that v = 0 is the éxceptional index. According to eq.(184), the
following values are obtained for the minimal orders:
m =nm

4 = 2,2,2, etc. (323)

Thus, in analogy to Fig.l8, the pattern shown in Fig.2l will be obtained.
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] Power orders

For each curve, a normal solution x(t) can be defined. [l§é
Case (d): With the period P = 27, the quantity v = O is the resonance

index, v = 1 the exceptional index, and v = 2 the principal index. Since, for

the reduced differential equation, the resonance case does not exist, the follow-

ing can be calculated according to theorem 18:

w

¥
jz[m](t) far = R(eas - —awEo

with the solution %(t), periodic with 27 [see eq.(316)] at e = - —%— and

¢y = 1. For the minimal orders, the following values are obtained:
m=m =~ 0,1,2,3, etce.

For the power orders with two case differentiations, the pattern of all possible

cases is obtained. (In the dotted curve, w; = 1 has been assumed while, in the

\ Pover orders




dashed curve, the minimal solution w; = O has been assumed.)

Example L: In the differential equation /187
(3+4) int 4% 4 4+ cost _(j+2)
R -
int j+1 2 (3 (324)
+2_Si_ng_€ xI+1 & st = - 2(2+cost)
with j 2 O which, for j = O, has the general solution
2(t) = ¢ cost + % t sint + 2 cost - 2 +
2t (325)
+1co(t sint + 1) +1c1sint + 2c1' t cost +2c2-cost
we obtain
-~ A ~ S
ey = sint, Tpy= 1, Y= cost, Tp3= o,
n u . ‘ (326)
m, = 2, m, = 2 mit i‘l = 1 and i, is nonexistent,
Here, our scheme for the minimal orders reads
j=o 2|3 |32
m o 1 1 |4 1
m, 2 2) 2|2 2
m, 2 2] 2]|-2 2
] I
According to eqs.(16L) and (166), we calculate
5 - % .. - sint s % _2cost+1 | (327)
z["l] Y[’I] m and ZU'J_ ‘T[Z] 2(2 + cOSt)—
This will yield
r T
J 2ot reyar - 2 j sint dt = o
[’L'l( ?
and ] . (328)

T;[aj(t) r(t)at = 7(2 cost + 1)dt = 2 ¥ F o,
o 13

Consequently, the exceptional case is present for v = 1, while the resonance

case occurs for v = 2. Thus, the overall minimal order [see eq.(184)] will

be m = Max(my) = 2 for all j. Here, it is of no importance whether v = 0 is /188

(Vres.)
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the resonance index or not (see case IV on p.108). All solutions x(t), no
matter how large j might be, show the same behavior with respect to the sequence
of the power orders of x, x', x", etc. This will yield the pattern shown in

Figo 23.

l Power orders

“’Sﬁ',tﬂi mwyp heeeeserecooon ;1"“'.;.'! --------------

011 F - - a1
Fig.23

As a final example, let us consider the general differential equation with

constant coefficients s Al
L (%] = ;(n J)+ a, x(n J_'1)+...+ an_3 x = 1(t)

(ay_; # o)) (329)
where f(t) is to have the period P. It can be readily proved that all solu-
tions, periodic with P, of the reduced homogeneous differential equation are
functions with a mean value of zero. _If, namely, a function §(t), periodic
with P, is introduced into the homogeneous reduced differential equation, all
terms which are multiplied by the derivatives ', §", ..., &‘D—J), have a mean
value of zero. Consequently, also the last term, a;-;$(t), must have a zero

mean value.

It follows from the above statement that the functions /189
q(vﬁt) ’9(vﬂt) (¥=1,...,%) [see, for example, eq.(250)]

have a mean value of zero. We must now prove that all functions $u(t)(u = (v) +
+ 1, eee, [V]l; v =1, ..., §) must have a mean value of zero.

For example, the differential equation, homogeneous to eq.(329), is solved
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&

by means of the argument $(t) = e'* . This is assumed to yield the character—

istic equation xR\ ~ -
G- TS (330)

BN
™

te

with pairwise different values @1, ..., @; where, in addition to a complex @

M

—

also the conjugate-complex root @ occurs. Then, the general solution of the

differential equation homogeneous to eq.(329) will read
o~ x

t
F(t) = t & Baw, (331)

V=1

where Py(t) represents an arbitrary polynomial of the degree my - 1:

v, e v, v
B =75t +%, ¢ 4 % £ +7%
v Y T Y Tt w2 T Cas (332)

The differential equation, homogenecus to eq.(329), has solutions with the

period P exactly when the solutions oy, .., @; of the characteristic equation

o
1 . Let us assume that this is true for

* *o, - ¥* . i
the values @3, ..o, @3 while the remaining @, are no whole multiples of 2L

(330) contain whole multiples of

We repeat here that a? # O since, otherwise, the differential equation homogene-
ous to eg.(329) would have to have a constant solution which contradicts the
stipulation of az~y # O. For the eigenvalues a?(v =1, eeey Dy eee, 8), the
following bound [see (Bibl.l) eq.(20)]
X ICorE (333)
at first, is not valid. Generally, we put
x [190
oL, =w, o+ é/gr (.v: s fyenns ;) . (334)
According to egs.(331), (332), and (33)), the first row of the fundamental
solution matrix §(t) has the form
AT ~
S -(8 4 8) (335)
with
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(= —1)! )
2 -1 ’ (336)
1 t £ L FT
it L Y
:(C )pl N o 0,‘.‘") .' e‘it
¢
. 1
T éf’v £
= 17:' A
[see eq.(95)]. From this, we obtain directly
s ;F't &? (t) =0 for/"’(v)f';---, [VJ;(V=11-~-)?).
(B = s L®= (337)

That é(v)(t) (v = 1, .o, f) has a mean value of zero was determined above;
naturally, the remaining ®u = 0 also have a mean value of zero,

The above statements yield the following theorem:

Theorem 28: In the case of a differential equation with constant coeffi-
cients, no iy existse.

Consequently, the matrix A =8° automatically is in the Jordan normal form
[see egs.(114), (123)]; for the transitory transformation matrix, € =C is

valid.

Consequently, the scheme for the minimal orders has the following form:

— e — 191
13 =0 W—W 2 3 jzo
I .
Bs o 1 2 3 J
A~ A A ~ ﬁ
™, m g M| ™ 1 (338)
m o i a fi ]
2 2 2 2 2 2
~ ~ A A ~
L m L_éﬁ n. | mg EN

In general, at low values of j and if the resonance case is present for the
reduced differential equation, the resonance subcase cannot be of any signifi-
cance for the index v = 0. However, as soon as J is sufficiently large, m will
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predominate over all other orders My, ..., mg and it becomes of importance to
determine whether Vv = 0 is a resonance index or not. For this we need the solu-

tion zgro0y3 (t), periodic with P, of the adjoint homogeneous differential equa~

tion, which already is defined for j = 1,
- X
L[egeg] = - L [Zpen] = © - (339)

First, we will demonstrate that Zrroy) (t) must be constant. For this, we start
from eq.(329) with f(t) of zero mean value. By j integrations and making use

of the auxiliary theorem in Section 3, we obtain an equation

(3 . p () (340)

L [x]sx(n) + a, x(n-’]) toeot an—j

with an F(t) of zero mean value. Since X(t) has the power order of

m= P a)
":1"“')f) v
v Rea.

the same power order will be valid also for x(t). Since we have my = j in ac-
cordance with eq.(338), it follows that v = O is the exceptional index for j >

> fi. Consequently, it then is necessary that

?
5[ Zpoy (7 Ftmdz =o (341)
192

(342)

The assumption

2ot = X+ Zpop(t)

with Zggoyy of zero mean value and constant k would lead to a contradiction

with eq.(341) if
F(t) = Zrro1g (t)

is selected. Therefore, it is obvious that in eq.(3L2), we have Z;(oy; () = O.

The constant k is determined in accordance with eq.{17.) as

T T (313)

n-J
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From eq.(l79) we then find that v = 0 is the resonance index for the differ-

tial equation (329), provided that f(t) has a mean value differing from zero

and will be the exceptional index if the mean value of f(t) is zero (see also

footnote on p.35).
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ential equations of the first order;
2) On the resonance case in systems of n ordinéry nonlinear differ-
ential equations of the first order;
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ential equations.
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th

n order
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